Intra-annular reactions of the (1,3-xylylene)-18-crown-5 system: synthesis and crystal structure of [2-(bromomagnesio)-1,3-xylylene]-18-crown-5, [2-(bromomercurio)-1,3-xylylene]-18-crown-5 and bis[(1,3-xylylene-18-crown-5)-2-yl]mercury

Peter R. Markies, Alan Villena, Otto S. Akkerman and Friedrich Bickelhaupt
Scheikundig Laboratorium, Vrije Universiteit, De Boelelaan 1083, 1081 HV Amsterdam (Netherlands)

Wilberth J.J. Smeets and Anthony L. Spek
Bijvoet Center for Biomolecular Research, Vakgroep Kristal- en Structuurchemie, University of Utrecht, Padualaan 8, 3584 CH Utrecht (Netherlands)
(Received April 5, 1993)

Abstract

The Grignard compound [2-(bromomagnesio)-1,3-xylylene]-18-crown-5 (4) was prepared from the aryllithium compound (2-hithio1,3 -xylylene) 18 -crown-5 (9) and magnesium bromide. The crystal structure of 4 shows that it crystallizes without solvent and is coordinatively saturated (distorted octahedral) by complexation of the magnesium with four of the five crown ether oxygens.

The $1: 1$ reaction of 9 with HgBr_{2} yielded the corresponding organomercury compound [2-(bromomercurio)-1,3-xylylene]-18-crown-5 (10), which crystallizes without solvent. Its crystal structure reveals that intramolecular $\mathrm{Hg}-\mathrm{O}$ coordination occurs with two of the five oxygens, and only weak interaction with a third crown ether oxygen. Keaction of $\mathbf{1 0}$ with metallic magnesium lead to the symmetric compound bis(1,3 -xylylene-18-crown- 5)-2-yllmercury (11). The centrosymmetric crystal structure of 11 shows that the mercury is intramolecularly coordinated with only four of the ten oxygens; the mercury atom is completely shielded by the crown ether rings. This shielding is probably the reason for the failure to bring about reaction of $\mathbf{1 1}$ with magnesium to give the corresponding diarylmagnesium compound.

The crown ether Grignard 4 was treated with deuterium oxide, chlorotrimethylstannane, iodine and benzophenone to give the products (2-D-1,3-xylylene)-18-crown-5 (14a), (2-trimethylstannyl-1,3-xylylene)-18-crown-5 (15), (2-iodo-1,3-xylylene)-18-crown-5 (16) and 2-(diphenylhydroxy)methyl-1,3-xylylene)-18-crown-5 (17) (the latter being converted into its methyl ether (2-(1,1-diphenyl-2-oxapropyl)-1,3-xylylene)-18-crown-5 (17a) for identification), respectively. The lithium compound 9 was treated with benzophenone, chlorotrimethylgermane, chlorodiphenylphosphine and 4,4'-dimethoxybenzophenone to give intra-annularly substituted crown ether derivatives 17, (2-trimethylgermyl-1,3-xylylene)-18-crown-5 (18), (2-diphenylphosphinyl-1,3-xylylene)-18-crown-5 (19) (the latter undergoing slow oxidation to (2-oxodiphenylphosphinyl-1,3-xylylene)-18-crown-5 (20)) and (2-(4,4'-dimethoxy-diphenylhydroxymethyl)-1,3-xylylene)-18-crown-5 (21) (which was converted under acidic conditions to (2-[(4-methoxyphenyl)(4'-oxo- $2^{\prime}, 5^{\prime}$-cyclohexylidene)methyl]-1,3-xylylene\}-18-crown-5 (22)), respectively.

1. Introduction

In a previous paper [1], we discussed the reactions of (2-bromo-1,3-xylylene)-15-crown-4 (1) and (2-bromo-1,3-xylylene)-18-crown-5 (2) with magnesium, performed to prepare the Grignard reagents [2-(bromo-magnesio)-1,3-xylylene]-15-crown-4 (3) and [2-(bromo-magnesio)-1,3-xylylene]-18-crown-5 (4) (Scheme 1).

Correspondence to: Dr. O.S. Akkerman.

During these reactions, two major by-products were formed in a $1: 1$ stoichiometry, viz. the "hydrolysis" product of the Grignard compound and a Grignard compound in which the crown ether ring was cleaved at a specific site. When the reaction was performed in a deuterated solvent, the same, i.e. undeuterated, products were formed, indicating that the "hydrolysis" product did not arise from proton abstraction from the solvent. Owing to these side reactions, isolation from the reaction mixture of pure 4 (17% yield following a $\mathrm{Mc}_{3} \mathrm{SnCl}$ quench) was not possible. However, during

Scheme 1.
the reaction of $\mathbf{1}$ with magnesium in a relatively high concentration, part of the formed Grignard 3 crystallized out, owing to its low solubility in THF ($<4 \mathrm{mmol}$ 1^{-1}). The X-ray crystal structure of 3 showed that the magnesium coordinates most strongly with the two central, adjacent, oxygens O 2 and O 3 of the polyether ring, thercby activating the hydrogens of the cthylene unit between these oxygens. Assuming that the Grignard formation occurs, at least in part, via an anionic intermediate (R^{-}in Scheme 2), which abstracts an activated proton from a previously formed Grignard molecule 3, the "hydrolysis" product $\mathbf{5}$ is released as $\mathbf{3}$ undergoes cleavage of the crown ether ring to give 6 .

The $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectra of the mixture produced by reaction 2 with magnesium showed that two different cleavage products ($7 \mathbf{a}$ and $7 \mathbf{b}$) were present, indicating that in an intact molecule of 4 , coordination similar to that in $\mathbf{3}$ must be present. On deuterolysis followed by acidic work-up, both cleavage products yielded diol 8 (Scheme 3).

For comparative studies with 3, it was essential to have available the crystal structure of 4 . Since 4 could not be isolated from the Grignard reaction mixture, an alternative synthesis had to be developed.

An obvious candidate as the starting material for the synthesis of 4 was the corresponding aryllithium compound (2 -lithio- 1,3 -xylylene)-18-crown-5 (9), first synthesized by Reinhoudt et al. [2,3]. For the conversion of 9 into $\mathbf{4}$, two routes can be envisaged (Scheme 4): (i) reaction of 9 with 1 equiv. of mercuric bromide to give the air-stable [2 -(bromomercurio)-1,3-xylylene]18 -crown-5 (10), which can be purified under "normal" laboratory conditions, before being converted into 4 by

Scheme 2.

Scheme 3.
the exchange reaction with magnesium; and (ii) reaction of 9 with magnesium bromide (Scheme 4) in which case $\mathbf{4}$ would have to be separated from lithium bromide.

2. Results and discussion

The lithium compound 9 was prepared by halogenmetal exchange of 2 with n-butyllithium at low temperature $[2,3]$. The $1: 1$ reaction of 9 with mercuric bromide yielded 10, the crystal structure of which was determined (vide infra). Reaction of $\mathbf{1 0}$ with methylmagnesium iodide gave 12, a stable compound that disproportionated to dimethylmercury and the diarylmercury compound $\mathbf{1 1}$ only very slowly ($<5 \%$ after 1 month in the solid state, vide infra). Disappointingly, treatment of $\mathbf{1 0}$ with magnesium in THF did not yield the Grignard reagent 4. Instead, under rather drastic conditions ($50^{\circ} \mathrm{C}, 10$ days), 11 was formed (Scheme 4). Apparently, the magnesium acts as a reducing agent, giving the unstable mercury(I) compound 11 a as initial product, which loses Hg^{10} (which forms an amalgam with the excess of magnesium) to give 11, a compound that was also formed in the $2: 1$ reaction of 9 with HgBr_{2}. It is noteworthy that $\mathbf{1 1}$ does not undergo the

Scheme 4.

Scheme 5.
expected consecutive reaction with magnesium to give the magnesium analogue of 11 (vide infra).

Support for the intermediacy of the mercury(I) compound 11a comes from the reaction of the lithium derivative of 1 , prepared by its reaction with n-butyllithium in the presence of $\mathrm{Hg}_{2} \mathrm{Br}_{2}$. Apparently, in this case also, elimination of mercury (0) from the primary intermediate 13a, the crown-4 analogue of 11a, gave 13 in reasonable yield (57%), together with n-butylmercuric bromide (Scheme 5).

The crystal structure of $\mathbf{1 1}$ (vide infra) shows that the mercury atom is only intramolecularly coordinated by four of the ten oxygens and is completely encapsulated by both crown ether rings, making it inaccessible to the magnesium and thus completely inhibiting the normally expected metal/metal exchange.

The successful method for the preparation of 4 was found to be the second alternative, the reaction of lithium compound 9 with magnesium bromide (Scheme 4). This gave the Grignard reagent in high yield and purity, and in crystalline form. Its X-ray crystal structure was determined and is discussed later. The compound was further identified by reactions with $\mathrm{D}_{2} \mathrm{O}$, $\mathrm{Me}_{3} \mathrm{SnCl}$, iodine, and benzophenone, which gave 14a and 15-17, respectively, in high yield (see Scheme 6).

The availability of 9 prompted us to examine some more of its reactions (Scheme 7). Some of the reactions were straightforward and analogous to those of 4 , giving 14a, 17 (which was converted to its methyl ether 17a for identification), 18 and 19; the latter compound was oxidized slowly to $\mathbf{2 0}$. Of special interest is the formation of 22. It was expected that from 9 and 4,4'-dimethoxybenzophenone and subsequent treatment of the initially formed carbinol 21 with HCl , a crown ether stabilized carbocationic species would be formed. However, under the reaction conditions employed, 21 lost methanol to give the quinone methine 22. Initially, this subsequent reaction was thought to

Scheme 6.

Scheme 7.
result from the coordinating power and/or steric interaction of the crown ether ring. However, exploratory reactions of $4,4^{\prime}$-dimethoxybenzophenone with Grignard reagents bearing only small alkyl substituents in the ortho positions revealed that the presence of the crown ether ring is not essential for occurrence of this elimination reaction; e.g. with 2,6-dimethylphenylmagnesium bromide, the analogous quinone methine was formed. The results of these latter investigations will be published elsewhere.

When a solution of 9 was warmed to room temperature, appreciable amounts (up to 67%) of the $2-n-$ butylated product 23 were formed from 9 and n-butyl bromide (cf. [3]). An alternative synthesis of 9, resulting in a product not contaminated with n-butyl bromide, involved reaction of $\mathbf{1 0}$ with n-butyllithium; the yield of 9 was nearly quantitative, but the compound necessarily contained a molar equivalent of di(nbutyl)mercury (24; Scheme 4).

2.1. Preparation and crystal structure of [2-(bromomer-curio)-1,3-xylylene1-18-crown-5 (10)

The mercury compound 10 was synthesized by the reaction of 9 and HgBr_{2} in a $1: 1$ ratio (Scheme 4); its identity was confirmed by the crystal structure shown in Fig. 1. No external solvent molecules are involved in the coordination of the mercury atom. A selection of bond lengths and bond angles is given in Table 1. The bond lengths $\mathrm{Hg}-\mathrm{O} 1(2.754(6) \AA)$ and $\mathrm{Hg}-\mathrm{O} 5(2.855(6)$ \AA) indicate that there are weak coordinative bonds to these oxygens, while the $\mathrm{Hg}-\mathrm{O} 4$ bond distance of $3.060(6) \AA$, clearly shorter than the sum of the van der Waals radii of about $4.00 \AA$, suggests a further, rather weak, interaction. Probably because of these mercuryoxygen interactions, the $\mathrm{C} 1-\mathrm{Hg}-\mathrm{Br}$ bond angle, $175.0(2)^{\circ}$, deviates slightly from the linear geometry of non-coordinated, sp-hybridized mercury, the Hg and Br moving away from these oxygens. All the oxygens, the three interacting ones included, lie above the plane of the aromatic ring. As indicated by the torsion angle $\mathrm{Hg}-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3\left(177.4(7)^{\circ}\right)$, the $\mathrm{Hg}-\mathrm{C} 1$ bond is slightly

Fig. 1. Pluton drawing of $\mathbf{1 0}$, with the atom labeling.
bent down from the plane of the aromatic ring. The $\mathrm{C} 1-\mathrm{Hg}-\mathrm{O}$ angles in the two five-membered rings, resulting from the coordination of the mercury with O1 and 05 , are $72.5(3)^{\circ}$ and $71.9(3)^{\circ}$, respectively; they are determined by the rigidity of the five-membered rings. The $\mathrm{O} 4-\mathrm{Hg}-\mathrm{O} 5$ angle is small: $57.81(16)^{\circ}$. The $\mathrm{O} 1-$ $\mathrm{Hg}-\mathrm{O} 5$ bond angle, $136.6(2)^{\circ}$, is rather large.

2.2. Preparation and crystal structure of bis/(1,3-xyly-

 lene-18-crown-5)-2-yl/mercury (11)Compound 11 was synthesized from 9 and HgBr_{2} in a $2: 1$ ratio (Scheme 4); its identity was confirmed by the crystal structure shown in Fig. 2. A selection of bond lengths and bond angles is given in Table 2. Like 10 , the compound crystallizes without solvent molecules. The structure is centrosymmetric around the mercury, which means that the oxygens $\mathrm{O} 1, \mathrm{O} 5$, O1a and O5a lie in one plane on the corners of a parallelogram with mercury in its center; for these oxygens, weak coordination is apparent: $\mathrm{Hg}-\mathrm{O} 1(=$ $\mathrm{Hg}-\mathrm{Ola}$) $3.064(3) \AA$ and $\mathrm{Hg}-\mathrm{O} 5(=\mathrm{Hg}-\mathrm{O} 5 \mathrm{a}) 2.984(3)$. These bond lengths are slightly larger than those found in the mercury bromide compound $\mathbf{1 0}$ (vide supra). This may in part be the result of the presence of the

TABLE 1. Relevant distances (\AA) and angles $\left({ }^{\circ}\right)$ for 10

$\mathrm{Hg}-\mathrm{C} 1$	$2.057(9)$	$\mathrm{Hg}-\mathrm{O} 1$	$2.754(6)$	$\mathrm{Hg} \cdots \mathrm{O}_{2}$	$4.247(6)$
$\mathrm{Hg}-\mathrm{Br}$	$2.430(1)$	$\mathrm{Hg}-\mathrm{O} 4$	$3.060(6) \mathrm{Hg}-\mathrm{O} 5$	$2.855(6)$	
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$119.8(8)$	$\mathrm{C} 1-\mathrm{Hg}-\mathrm{Br}$	$175.0(2)$		
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$121.1(9)$	$\mathrm{C} 1-\mathrm{Hg}-\mathrm{O} 1$	$72.5(3)$		
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$119.3(10)$	$\mathrm{C} 1-\mathrm{Hg}-\mathrm{O} 4$	$95.4(3)$		
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$122.3(9)$	$\mathrm{C} 1-\mathrm{Hg}-\mathrm{O} 5$	$71.9(3)$		
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$119.2(8)$	$\mathrm{O} 1-\mathrm{Hg}-\mathrm{O} 4$	$102.2(2)$		
$\mathrm{C} 2-\mathrm{Cl}-\mathrm{C} 6$	$118.1(8)$	$\mathrm{O} 1-\mathrm{Hg}-\mathrm{O} 5$	$136.6(2)$		
$\mathrm{O} 4-\mathrm{Hg}-\mathrm{O} 5$	$57.81(16)$				

Fig. 2. pluton drawing of 11, with the atom labeling.
relatively strongly electronegative bromine attached to the metal atom in $\mathbf{1 0}$, increasing its Lewis acidity and thereby the strength of the coordination bonds. Coordinative saturation and steric interactions may also play a role. The $\mathrm{Ol}-\mathrm{Hg}-\mathrm{O} 5$ angle is $119.09(8)^{\circ}$ and thus the angle $\mathrm{O} 1-\mathrm{Hg}-\mathrm{O} 5 \mathrm{a}$ equals $60.91(8)^{\circ}$. From the value of the $\mathrm{Hg}-\mathrm{O} 4$ bond length $(3.540(3) \AA$) the existence of a rather weak interaction with this oxygen seems likely. Oxygens $\mathrm{O} 2(\mathrm{Hg} \cdots \mathrm{O} 24.881(4))$ and O 3 ($\mathrm{Hg} \cdots \mathrm{O} 34.775(5)$) do not interact with the mercury. The $\mathrm{Hg}-\mathrm{Cl}$ bond is elongated ($2.070(4) \AA$) in 11 compared with that in $\mathbf{1 0}(2.057(9) \AA)$, probably as a result of the steric interaction of the crown ether rings. The sixfold coordination of the mercury can be regarded as strongly distorted octahedral.

As mentioned above, treatment of 11 with metallic magnesium did not yield the expected magnesium analogue. The crystal structure clearly shows that the mercury atom is encapsulated by the two crown ether

TABLE 2. Relevant distances (\AA) and angles $\left({ }^{\circ}\right)$ for 11

$\mathrm{Hg}-\mathrm{O} 1$	$3.064(3) \mathrm{Hg} \cdots \mathrm{O} 2$	$4.881(4) \mathrm{Hg} \cdots \mathrm{O} 3$	$4.775(5)$	
$\mathrm{Hg}-\mathrm{O} 4$	$3.540(3) \mathrm{Hg}-\mathrm{O} 5$	$2.984(3) \mathrm{Hg}-\mathrm{C} 1$	$2.070(4)$	
$\mathrm{Cl}-\mathrm{Hg}-\mathrm{Cla}$	180	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$120.2(4)$	
$\mathrm{O} 1-\mathrm{Hg}-\mathrm{O} 1 \mathrm{a}$	180	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$121.3(4)$	
$\mathrm{O} 5-\mathrm{Hg}-\mathrm{O} 5 \mathrm{a}$	180	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$119.8(4)$	
$\mathrm{O} 1-\mathrm{Hg}-\mathrm{O} 5$	$119.09(8)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$120.4(4)$	
$\mathrm{O} 1-\mathrm{Hg}-\mathrm{O} 5 \mathrm{a}$	$60.91(8)$	$\mathrm{C} 5-\mathrm{C}-\mathrm{Cl}$	$120.8(4)$	
$\mathrm{C} 1-\mathrm{Hg}-\mathrm{O} 5$	$69.17(13)$	$\mathrm{C} 2-\mathrm{Cl}-\mathrm{C} 6$	$117.4(3)$	

Fig. 3. Space-filling model of 11; oxygens are shown in black, the mercury is invisible.
rings, which inhibits the approach of the magnesium to the active site of the molecule. This steric shielding is shown even more convincingly in the space filling model of $\mathbf{1 1}$ in Fig. 3.

2.3. Preparation and crystal structure of [2-

 (bromomagnesio)-1,3-xylylenel-18-crown-5) (4)The Grignard reagent 4 was obtained by the addition of 1 molar equivalent of magnesium bromide to a solution of 9 in THF at $-60^{\circ} \mathrm{C}$ (Scheme 4). Owing to its low solubility in THF at this temperature, the magnesium bromide was present in suspension; warming to room temperature during about 15 min resulted in formation of a clear supersaturated mixture from which crystals of $\mathbf{4}$ separated on standing.

According to the ${ }^{1} \mathrm{H}$ NMR spectrum in THF- d_{8}, the product 4 contained no solvent of crystallization, indicating that the magnesium was only intramolecularly coordinated. The crystalline product was transferred into a glovebox with nitrogen atmosphere to allow selection of the best crystals. The remaining crystals were treated with water, titration confirmed a "total base" to Mg^{2+} ratio of $1: 1$. The identity as completely intramolecularly coordinated 4 was confirmed by its X-ray crystal structure.

The unit cell of $\mathbf{4}$ contains two chemically identical residucs which differ only slightly in their conformations. Since both residues are very similar, only one is

Fig. 4. pluton drawing of one of the two similar crystallographically independent molecules of 4 , with the atom labeling.
shown in Fig. 4; bond angles and distances for this molecule are presented in Table 3. The distorted-octahedrally coordinated magnesium atom has interactions with four of the five crown ether oxygens. The low symmetry of the structure and the presence of a non-coordinating oxygen indicates an "unfavorable" (too large) size of the crown ether ring in 4. In particular, the angles involving the MgBr bond show notable deviations from ideal octahedral coordination: $\mathrm{Br}-$ $\mathrm{Mg}-\mathrm{C} 1110.6(1)^{\circ}, \mathrm{Br}-\mathrm{Mg}-\mathrm{O} 2 \mathrm{9}^{2} .1(1)^{\circ}, \mathrm{Br}-\mathrm{Mg}-\mathrm{O} 3$ $148.0(1)^{\circ}, \mathrm{Br}-\mathrm{Mg}-\mathrm{O} 488.0(1)^{\circ}, \mathrm{Br}-\mathrm{Mg}-\mathrm{O} 593.1(1)^{\circ}$. As expected, the angles inside the five-membered chelation rings are relatively small $\left(\mathrm{O} 2-\mathrm{Mg}-\mathrm{O} 372.6(2)^{\circ}\right.$, $\mathrm{O} 3-\mathrm{Mg}-\mathrm{O} 4 \quad 69.5(2)^{\circ}, \mathrm{O} 4-\mathrm{Mg}-\mathrm{O}, 69.9(2)^{\circ}, \mathrm{C} 1-\mathrm{Mg}-$ $\left.\mathrm{O} 57.5(2)^{\circ}\right)$. There is a large variation in $\mathrm{Mg}-\mathrm{O}$ bond distances (Mg-O2 2.170(4) $\AA, \mathrm{Mg}-\mathrm{O} 32.235(4) \AA, \mathrm{Mg}-$ O4 2.331(4) $\AA, \mathrm{Mg}-\mathrm{O} 52.126(4) \AA$), while the $\mathrm{Mg}-\mathrm{C}$ and $\mathrm{Mg}-\mathrm{Br}$ bonds have quite normal lengths (2.176(5) and $2.597(23) \AA$, respectively).

In order to relate the crystal structure of 4 to the ether cleavage reaction occurring during its formation from 2 and magnesium, this latter reaction was reinvestigated. From our earlier work [1], it was known that a

TABLE 3. Relevant bond distances (\AA) and angles $\left({ }^{\circ}\right)$ for 4 (molecule 1)

$\mathrm{Mg}-\mathrm{C}(1)$	$2.176(5) \mathrm{Mg}-\mathrm{O}(2)$	$2.170(4) \mathrm{Mg}-\mathrm{O}(4) 2.331(4)$	
$\mathrm{Mg}-\mathrm{Br}$	$2.597(2) \mathrm{Mg}-\mathrm{O}(3)$	$2.235(4) \mathrm{Mg}-\mathrm{O}(5) 2.126(4)$	
$\mathrm{Br}-\mathrm{Mg}-\mathrm{C}(1)$	$110.6(1)$	$\mathrm{O}(2)-\mathrm{Mg}-\mathrm{O}(3) 72.6(2)$	
$\mathrm{Br}-\mathrm{Mg}-\mathrm{O}(2)$	$93.1(1)$	$\mathrm{O}(3)-\mathrm{Mg}-\mathrm{O}(4)$	$69.5(2)$
$\mathrm{Br}-\mathrm{Mg}-\mathrm{O}(3)$	$148.0(1)$	$\mathrm{O}(4)-\mathrm{Mg}-\mathrm{O}(5) 69.9(2)$	
$\mathrm{Br}-\mathrm{Mg}-\mathrm{O}(4)$	$88.0(1)$	$\mathrm{C}(1)-\mathrm{Mg}-\mathrm{O}(5) 77.5(2)$	
$\mathrm{Br}-\mathrm{Mg}-\mathrm{O}(5)$	$93.1(1)$		

deuterium oxide quench of the reaction mixture and subsequent acidic workup yielded the ether-cleavage product 8 (Scheme 3). This product must originate from a precursor carrying a vinyl ether group at the end of one of the "side-arms", which is lost during acidic hydrolysis. Since the hydroxylic positions in $\mathbf{8}$ are not identical two intermediate compounds ($\mathbf{7 a}$ and $\mathbf{7 b}$) can be imagined, both of which will give 8 upon acidic hydrolysis. When the mixture formed from reaction of 2 with magnesium was quenched with deuterium oxide and worked up under slightly basic conditions, two different vinyl ether groups (ratio roughly $1: 1$) could be distinguished in the ${ }^{1} \mathrm{H}$ NMR spectrum (see Experimental section), in agreement with the presence of 7c and 7d. Thus, the ether-cleavage reaction occurring during the formation of $\mathbf{4}$ is slightly less specific than in the case of 3 , for which only one cleavage product was observed (see Introduction). However, it should be pointed out that in view of the a priori larger number of possible modes of cleavage (in total, five different products are conceivable), this cleavage reaction is also far from random.

We suggest that these observations can be rationalized as follows. The Grignard reagent 4 , which is the substrate for the ether cleavage by the intermediate carbanionic species (in analogy to Scheme 2), is asymmetric in the crystal, but not in solution. Its ${ }^{1} \mathrm{H}$ NMR spectrum (THF- $d_{8}, 250 \mathrm{MHz}$) suggests a much higher symmetry: apparently $C_{2 i}$. This implies that O 1 and O5 are equally coordinated, as indicated by the structures 4 and $4^{\prime}\left(C_{s}\right.$ symmetry, Scheme 8); this (fast) exchange leads to the equivalence of the methylene pairs $\mathrm{H}_{\mathrm{A}} / \mathrm{H}_{\mathrm{B}}$ and $\mathrm{H}_{\mathrm{C}} / \mathrm{H}_{\mathrm{D}}$. But the two protons of each of the benzylic methylene groups are also equivalent (as was also found for 3 [1]). This is in sharp contrast to observations on other derivatives of 1,3-xylylene-18-crown-5, which mostly show an AB pattern for the benzylic methylene group because the crown ether bridge cannot swing around to the other side of the aromatic ring; this holds even for compounds such

Scheme 8.
as 2 which carry smaller groups than MgBr at position 2. The high symmetry of 4 in solution can be accounted for assuming a fast ionic dissociation and recombination of the $\mathrm{Mg}-\mathrm{Br}$ bond, leading to an equilibrium between 4 and its mirror image $4^{\prime \prime}$ via cation 25 ($C_{2 v}$ symmetry); this equilibrium, which leads to the equivalence of H_{A} and H_{B} as well as H_{C} and H_{D}, must be rapid on the NMR time scale. (Note that 4^{\prime} and $4^{\prime \prime}$ are structurally identical, but differ by the exchange of the methylene pairs $\mathrm{H}_{\mathrm{A}} / \mathrm{H}_{\mathrm{B}}$ and $\mathrm{H}_{\mathrm{C}} / \mathrm{H}_{\mathrm{D}}$.) As O1 and O5 are weakly bound to magnesium, this leaves oxygens 2 , 3 and 4 available for strong coordination. Consequently, only the ethylene protons between these latter three oxygens are activated for cleavage, as envisaged in the mechanism proposed in Scheme 3; as there are two different types of such protons, i.e. protons 9 and 10 , their abstraction by the intermediate anionic species leads to the two cleavage products $\mathbf{7 a}$ and $\mathbf{7 b}$ in about equal amounts.

The crystal structures of bromomercurio compound 10 and Grignard 4 clearly illustrate the differing behaviors of magnesium and mercury in the aryl-metal bromide system. Magnesium tends to attain high coordination numbers, resulting in a (distorted) octahedral environment in 4 , in which the $\mathrm{C}-\mathrm{Mg}-\mathrm{Br}$ angle is $110.6(1)^{\circ}$, but the situation in the analogous mercury compound is quite different. Although weak coordination with the crown ether oxygens is discernable, this hardly influences the $\mathrm{C}-\mathrm{Hg}-\mathrm{Br}$ angle; in $\mathbf{1 0}$, this angle is $175.0(2)$. The deviation from 180°, expected in an uncomplexed and undistorted mercury compound, may result either from a slight rehybridization of mercury as a result of caordination or from the steric interaction of the crown ether ring on one side of the molecule. Probably, both effects operate.

3. Experimental details

The crown ether bromides 1 and 2 were made by the known multistep procedure [2], starting from 2,6dimethylaniline. Lithiation reactions were performed in standard glassware with ground joints under an argon atmosphere. THF was dried by distillation from LiAlH_{4} prior to usc. In order to prevent contamination by hydrolysis or oxidation, the synthesis of 4 and its quench reactions were performed in sealed and evacuated glass apparatus. For these experiments, the ethereal solvents were dried by distillation from a Na / K alloy. Concentrations of "total base" and Mg^{2+} of organomagnesium solutions were determined by titration of a hydrolyzed sample with acid-base or EDTA complexon, respectively [4].

NMR spectra were recorded with a Bruker WH-90 $\left({ }^{1} \mathrm{H}, 90 \mathrm{MHz}\right)$ or a Bruker WM-250 $\left({ }^{1} \mathrm{H}, 250 \mathrm{MHz} ;{ }^{13} \mathrm{C}\right.$,
62.89 MHz). GLC-MS analyses were performed on a HP $5890 \mathrm{GC} / 5970 \mathrm{MS}$ combination, operating at 70 eV and equipped with a Chrompack CP Sil 19CB 51 $\mathrm{m} / 0.21 \mathrm{~mm}$ column. Elemental analyses were carried out at the TNO Institute For Applied Chemistry and Elemental Analyses (Zeist, The Netherlands). The starting materials 2,6 -dimethylaniline (Janssen), tetraethyleneglycol (Merck), chlorotrimethylgermane (Ventron), chlorotrimethylstannane (Janssen), benzophenone, 4,4'-dimethoxybenzophenone (Janssen) and mercuric bromide (Merck, z.A.) were commercially available. The magnesium used was triply sublimed. Mercurous bromide was precipitated from an aqueous mercurous nitrate solution by the addition of potassium bromide, washed with water and acetone, and vacuum dried. A solution of dry magnesium bromide in THF was prepared via the exchange reaction of mercuric bromide and magnesium metal [5].

3.1. (2-Bromomagnesio-1,3-xylylene)-18-crown-5 (4)

In a fully sealed glass apparatus, a suspension of magncsium bromide (1 mmol) in THF (7 ml) was added to a solution of 1 mmol of 9 (vide infra) in 100 ml of THF at $-60^{\circ} \mathrm{C}$. The reaction mixture was slowly warmed with shaking to room temperature. The magnesium bromide dissolved and a clear solution was obtained. Slow crystallization of 4 occurred when the solution was set aside for 24 h . The crystals, which have a very low solubility in THF (according to titration, about $3 \mathrm{mmol} \mathrm{l}^{-1}$) were separated from their mother liquor. After identification by ${ }^{1} \mathrm{H}$ NMR spectroscopy in THF- d_{8} (see below), some well-shaped crystals were selected for a X -ray structure determination. The remaining solid was hydrolysed, and the solution titrated to confirm the "total base" to Mg^{2+} ratio of $1: 1$.

3.2. Larger scale synthesis of 4

A solution of $2(10 \mathrm{mmol}, 3.75 \mathrm{~g})$ in THF (70 ml) was treated with n-butyllithium (10 mmol , in 6 ml of n-hexane) at $-60^{\circ} \mathrm{C}$. The solution of the lithiation product 9 , still at $-60^{\circ} \mathrm{C}$, was immediately quenched, with stirring, with a magnesium bromide suspension (10 mmol) in THF (40 ml). When the mixture was allowed to warm to room temperature, a clear solution was obtained.

An aliquot (4.76 ml) was quenched with an excess of deuterium oxide (about 0.5 ml), diluted ammonium chloride solution was added, and the organic material was extracted with dichloromethane. The extract was dried, filtered, and analyzed by GLC-MS. Apart from the expected deuterated product 14a, only about 10% of the starting material 2 was found to be present.

Crystallization of the remaining solution was induced by seeding with solid 4. An amorphous colorless
solid separated and was separated from the mother liquor by decantation then washed with 25 ml of THF which was distilled back on to the solid. Finally all solvent was distilled on to the solid material. Titration of a suspension of the solid in THF showed a "total base" $/ \mathrm{Mg}^{2+}$ ratio of $1.03: 1$, in accordance with a Grignard reagent. The residue of the mother liquor (a light yellowish oil) contained 2.02 mmol "total base" and $4.30 \mathrm{mmol} \mathrm{Mg}^{2+}$ indicating a total yield of about 70% of 4 in both fractions.

4: ' ${ }^{1}$ II NMR (250 MIIz , TIIF- d_{8}, ref. TIIF- $d_{7}=1.75$ ppm): $\delta 3.86\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{C}_{2} \mathrm{H}_{4}\right) ; 3.97-4.01\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}_{2} \mathrm{H}_{4}\right)$; 4.69 (s, 4 H , xylyl- CH_{2}); 6.76 (d, ${ }^{3} J=7 \mathrm{~Hz}$, xylyl-H(4,6)); $6.86\left(\mathrm{t},{ }^{3} J=7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{xylyl}-\mathrm{H}(5)\right.$). Due to the very low solubility of 4 in THF, signals of hydrolysis product (14, 0.4 equiv.) were discernible [6].

The solid, containing 4, was subjected to several quench reactions. Each time, a suspension of 4 (0.5-1 mmol , in 5 ml THF) was treated in a sealed ampoule with an excess of the pure quenching reagent. After 24 h the mixture was poured into water, and the organic material was extracted with dichloromethane. The extract was dried, filtered, and evaporated to dryness. In all cases a single product was formed. Quenching of 4 with an excess of deuterium oxide followed by the standard workup described above gave a colorless oil which crystallized upon standing: examination by ${ }^{1} \mathrm{H}$ NMR spectroscopy and GLC-MS revealed that the product was pure 14a (vide infra).

The mixture formed from 2 with magnesium in THF was quenched with deuterium oxide and worked up under neutral to slightly basic conditions. The ${ }^{1} \mathrm{H}$ NMR spectrum of the residue revealed the presence of 14/14a (66%) and two ether cleavage products bearing a vinylic ether group (7a/7h, 34\%). ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$, ref. $\mathrm{CHCl}_{3}=7.27 \mathrm{ppm}$) for 7a: $\delta 4.024$ (dd, ${ }^{3} J_{\text {cis }}=7 \mathrm{~Hz},{ }^{2} J_{g e m}=2 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}_{2} \mathrm{Z}$); 4.203 (dd, $\left.{ }^{3} J_{\text {trans }}=14 \mathrm{~Hz},{ }^{2} J_{\text {gem }}=2 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}_{2} \mathrm{E}\right) ; 6.519(\mathrm{dd}$, ${ }^{3} J_{\text {trans }}=14 \mathrm{~Hz},{ }^{2} J_{\text {cis }}=7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}=$). 7b: $\delta 4.0164$ ($\mathrm{dd},{ }^{3} J_{c i s}=7 \mathrm{~Hz},{ }^{2} J_{g e m}=2 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}_{2} \mathrm{Z}$); 4.195 (dd, $\left.{ }^{3} J_{\text {trans }}=14 \mathrm{~Hz},{ }^{2} J_{\text {gen }}=2 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}_{2} \mathrm{E}\right) ; 6.509(\mathrm{dd}$, ${ }^{3} J_{\text {trans }}=14 \mathrm{~Hz},{ }^{2} H_{\text {cis }}=7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}=$). Due to extensive overlap, the $\mathrm{C}_{2} \mathrm{H}_{4}$, aryl- CH_{2} and aryl-H signals of 14/14a and 7a/7b could not be assigned separately.

3.3. (2-Lithio-1,3-xylylene)-18-crown-5 (9)

The reported halogen-lithium exchange reaction of (2-bromo-1,3-xylylene)-18-crown-5 (2) [2] was slightly modified. To a solution of $2(751 \mathrm{mg}, 2 \mathrm{mmol})$ in THF (25 ml), cooled to $-60^{\circ} \mathrm{C}\left(\mathrm{CO}_{2} /\right.$ acetone $)$, was added within $1 \mathrm{~min}, 1.25 \mathrm{ml}$ (2.1 equiv.) of a 1.6 M solution of n -butyllithium in n -hexane. After 2 min stirring, the quenching reagent was added. Subsequently, the mix-
ture was warmed during 1 h to room temperature and the solvent evaporated off. After addition of $\mathrm{H}_{2} \mathrm{O}(0.5$ ml) to the residue, the organic material was extracted with dichloromethane. The extract was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and evaporated to dryness and the residue characterized by ${ }^{1} \mathrm{H}$ NMR spectroscopy (90 MHz) and / or GLC-MS.

3.4. Preparation of 9 free of n-butyl bromide

A solution of $10(0.5 \mathrm{mmol}, 288 \mathrm{mg})$ in THF $(25 \mathrm{ml})$ was cooled to $-60^{\circ} \mathrm{C}$, and 2 equiv. of n-butyllithium (1 mmol in 0.7 ml of n -hexane) were added. After 15 min , an excess of EtOD ($250 \mu \mathrm{l}$) was added and the mixture was warmed to room temperature. Water (200 ml) was added, and the organic products were extracted with dichloromethane. The extract was dried and filtered, and the solvent distilled off to give a colorless oil (0.44 g), the ${ }^{1} \mathrm{H}$ NMR spectrum ($90 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of which revealed the presence of $\mathbf{1 4 a}$ and di(n-butyl)mercury (24) in a $1: 1$ stoichiometry, together with about 3 equiv. of residual THF. GLC-MS analysis confirmed the presence of fully deuterated $\mathbf{1 4 a}$ and of 24 without further side products. The spectral data of $\mathbf{1 4 a}$ were in accordance with those reported previously [1].

24: GLC-MS mass spectrum: m / z (rel. intensity) 316 $\left(\mathrm{M}^{+}, 1\right), 202\left(1, \mathrm{Hg}^{+}\right), 57(100)$.
3.5. (2-Bromomercurio-1,3-xylylene)-18-crown-5 (10) and bis/(1,3-xylylene-18-crown-5)-2-yllmercury (11) from 9 and mercuric bromide

To a solution of $9\left(2 \mathrm{mmol}\right.$, in 50 ml THF) at $-60^{\circ} \mathrm{C}$ was added during $c a .15 \mathrm{~min}$, a molar equivalent of HgBr_{2} in 10 ml of THF; during the addition a white suspension was formed. The mixture was slowly warmed to room temperature and evaporated to dryness. Λ fter the addition of water, the organic material was extracted with dichloromethane. The extract was dried, filtered, and evaporated to dryness, to give an amorphous white solid. As indicated by ${ }^{1} \mathrm{H}$ NMR spectroscopy $\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$, two crown ether organomercury products were present. They were separated by means of fractional crystallization from acetone, and characterized by various spectroscopic techniques. The least soluble compound proved to be bis[(1,3-xylylene-18-crown-5)-2-yl]mercury ($11,0.30 \mathrm{~g}$, 38%, m.p. $162-163^{\circ} \mathrm{C}$); from the mother liquor, the more soluble (2 -bromomercurio-1,3-xylylene)-18-crown-5 ($\mathbf{1 0}$) was isolated ($0.44 \mathrm{~g}, 37 \%$).

Upon rapid addition (within 1 min) of the mercuric bromide solution to 9 by the procedure described above, only 10 was formed. After evaporation of the organic phase to dryness, crude $10(1.07 \mathrm{~g}, 93 \%$ yield, $>95 \%$ pure according to ${ }^{1} \mathrm{H}$ NMR spectroscopy, $\mathrm{CDCl}_{3}, 90$ MHz) was isolated as a colorless viscous oil, which
crystallized upon standing. The product was recrystallized from acetonc ($0.67 \mathrm{~g}=58 \%$ yicld, m.p. $90-92^{\circ} \mathrm{C}$).

10: ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$, ref. $\mathrm{CHCl}_{3}=7.27$ ppm): $\delta 3.50-3.94\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{C}_{2} \mathrm{H}_{4}\right) ; 4.57(2 \times \mathrm{d}, \mathrm{AB}$, $\delta \Delta=0.19 \mathrm{ppm},{ }^{2} J=12 \mathrm{~Hz}, 4 \mathrm{H}$, xylyl $\left.-\mathrm{CH}_{2}\right) ; 7.12-7.19$ (m, 3H, xylyl-H). ${ }^{13} \mathrm{C}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$, ref. $\left.\mathrm{CDCl}_{3}=77 \mathrm{ppm}\right): \delta 69.0\left(\mathrm{t},{ }^{1} J(\mathrm{C}-\mathrm{H})=140 \mathrm{~Hz}, 2 \mathrm{C}\right.$, $\left.\mathrm{C}_{2} \mathrm{H}_{4}\right) ; 70.0\left(\mathrm{t},{ }^{1} J(\mathrm{C}-\mathrm{H})=140 \mathrm{~Hz}, 2 \mathrm{C}, \mathrm{C}_{2} \mathrm{H}_{4}\right) ; 70.3(\mathrm{t}$, $\left.{ }^{1} J(\mathrm{C}-\mathrm{H})=141 \mathrm{~Hz}, 2 \mathrm{C}, \mathrm{C}_{2} \mathrm{H}_{4}\right) ; 70.3\left(\mathrm{t},{ }^{1} J(\mathrm{C}-\mathrm{H})=142\right.$ $\left.\mathrm{Hz}, 2 \mathrm{C}, \mathrm{C}_{2} \mathrm{H}_{4}\right) ; 74.4\left(\mathrm{t},{ }^{1} \mathrm{~J}(\mathrm{C}-\mathrm{H})=139 \mathrm{~Hz}, \mathrm{Hg}\right.$ satellites ${ }^{3} J\left(\mathrm{C}-{ }^{199} \mathrm{Hg}\right)=101 \mathrm{~Hz}, 2 \mathrm{Cm}$, xylyl- $\left.\mathrm{CH}_{2}\right) ; 127.6(\mathrm{~d}$, ${ }^{1} J(\mathrm{C}-\mathrm{H})-156 \mathrm{~Hz}, \mathrm{Hg}$ satellites ${ }^{3} J\left(\mathrm{C}-{ }^{199} \mathrm{Hg}\right)=177 \mathrm{~Hz}$, $2 \mathrm{C}, \operatorname{xylyl}(4,6)) ; 127.9\left(\mathrm{~d},{ }^{i} J(\mathrm{C}-\mathrm{H})=161 \mathrm{~Hz}, \mathrm{Hg}\right.$ satcllites ${ }^{4} J\left(\mathrm{C}-{ }^{199} \mathrm{Hg}\right)=13 \mathrm{~Hz}, 1 \mathrm{C}$, xylyl(5)); 144.2 (s, Hg satellites ${ }^{2} J\left(\mathrm{C}-{ }^{199} \mathrm{Hg}\right)=76 \mathrm{~Hz}, 2 \mathrm{C}$, xylyl(1,3)); 152.6 (s, low intensity, 1 C , xylyl(2)). MS (direct inlet, Varian CH5 DF): m / z (rel. intensity) 497 ($100, \mathrm{M}^{+}-\mathrm{Br}$, $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{O}_{5} \mathrm{Hg}$), $295\left(52, \mathrm{M}^{+}-\mathrm{HgBr}\right)$, 177(15), 133(21), 119(63), 103(84), 89(57), 77(30). Parent ion mass calcd. for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{O}_{5} \mathrm{Hg}$: 497.125; found 497.126. Melting point after repeated recrystallization from acetone: $94^{\circ} \mathrm{C}$. Anal. Found: $\mathrm{C}, 33.34, \mathrm{H}, 4.08 ; \mathrm{Hg}, 34.80$. $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{O}_{5} \mathrm{HgBr}$ calcd.: $\mathrm{C}, 33.37 ; \mathrm{H}, 4.03 ; \mathrm{Hg}, 34.83 \%$.

11: ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$, ref. $\mathrm{CHCl}_{3}=7.27$ ppm): $\delta 2.81-2.89\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}_{2} \mathrm{H}_{4}\right) ; 3.16-3.23(\mathrm{~m}, 4 \mathrm{H}$, $\left.\mathrm{C}_{2} \mathrm{H}_{4}\right) ; 3.30-3.89\left(\mathrm{~m}, 24 \mathrm{H}, \mathrm{C}_{2} \mathrm{H}_{4}\right) ; 4.80(2 \times \mathrm{d}, \mathrm{AB}$, $\Delta \delta=1.14 \mathrm{ppm},{ }^{2} J=12 \mathrm{~Hz}, 8 \mathrm{H}$, xylyl $-\mathrm{CH}_{2}$); 7.12 (t , ${ }^{3} J=7 \mathrm{~Hz}, 2 \mathrm{H}$, xylyl-H(5)); 7.24 (d, ${ }^{3} J=7 \mathrm{~Hz}, 4 \mathrm{H}$, xylyl-H(4,6)). ${ }^{13} \mathrm{C}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$, ref. CDCl_{3} $=77 \mathrm{ppm}): \delta 67.4\left(\mathrm{t},{ }^{1} J(\mathrm{C}-\mathrm{H})=139 \mathrm{~Hz}, 4 \mathrm{C}, \mathrm{C}_{2} \mathrm{H}_{4}\right)$; $70.4\left(\mathrm{t},{ }^{1} J(\mathrm{C}-\mathrm{H})=140 \mathrm{~Hz}, 4 \mathrm{C}, \mathrm{C}_{2} \mathrm{H}_{4}\right) ; 70.6\left(\mathrm{t},{ }^{1} J(\mathrm{C}-\mathrm{H})\right.$ $\left.=140 \mathrm{~Hz}, 4 \mathrm{C}, \mathrm{C}_{2} \mathrm{H}_{4}\right) ; 71.0\left(\mathrm{t},{ }^{1} J(\mathrm{C}-\mathrm{H})=131 \mathrm{~Hz}, 4 \mathrm{C}\right.$, $\left.\mathrm{C}_{2} \mathrm{H}_{4}\right) ; 75.7\left(\mathrm{t},{ }^{1} J(\mathrm{C}-\mathrm{H})=151 \mathrm{~Hz}, \mathrm{Hg}\right.$ satellites ${ }^{3} J(\mathrm{C}-$ $\left.{ }^{199} \mathrm{Hg}\right)=64 \mathrm{~Hz}, 4 \mathrm{C}$, xylyl $\left.-\mathrm{CH}_{2}\right) ; 126.3\left(\mathrm{~d},{ }^{1} J(\mathrm{C}-\mathrm{H})=\right.$ $159 \mathrm{~Hz}, 2 \mathrm{C}, \operatorname{xylyl}(5)$); 128.4 (d, ${ }^{1} J(\mathrm{C} \mathrm{H})=157 \mathrm{~Hz}, \mathrm{Hg}$ satellites ${ }^{3} J\left(\mathrm{C}-{ }^{199} \mathrm{Hg}\right)=90 \mathrm{~Hz}, 4 \mathrm{C}$, xylyl(4,6$)$); $146.5(\mathrm{~s}$, Hg satellites ${ }^{2} J\left(\mathrm{C}-{ }^{199} \mathrm{Hg}\right) \sim 50 \mathrm{~Hz}, 4 \mathrm{C}$, xylyl(1,3)); 172.7 (s, Hg satellites ${ }^{1} J\left(\mathrm{C}-{ }^{199} \mathrm{Hg}\right)=1794 \mathrm{~Hz}, 2 \mathrm{C}$, xylyl(2)). ${ }^{199} \mathrm{Hg}$ NMR ($44.77 \mathrm{MHz}, \mathrm{CDCl}_{3}$, ref. $\mathrm{Ph}_{2} \mathrm{Hg}=0 \mathrm{ppm}$): $\delta 49.75$ (s, broad, 1 Hg). MS (CI, NH_{3}, Finnigan MAT $90): m / z$ (rel. intensity) $810\left(78, \mathrm{M} \cdot \mathrm{NH}_{4}^{+}, \mathrm{C}_{32} \mathrm{H}_{50} \mathrm{O}_{10^{-}}\right.$ $\mathrm{HgN}) ; 514$ (5 , aryl $-\mathrm{Hg}^{+} \cdot \mathrm{NH}_{3}$); 497 (15 , aryl $-\mathrm{Hg}^{+}$); 314 (100, aryl-H $\cdot \mathrm{NH}_{4}^{+}$). Anal. Found: C, $48.51, \mathrm{H}$, $5.86 ; \mathrm{Hg}, 25.33 ;$ m.p. $162-163^{\circ} \mathrm{C}$ (acetone). $\mathrm{C}_{32} \mathrm{H}_{46} \mathrm{O}_{10}$ Hg calcd.: C, $48.57 ; \mathrm{H}, 5.86 ; \mathrm{Hg}, 25.35 \%$.

3.6. Formation of 11 by the reaction of $\mathbf{1 0}$ with magnesium

In a sealed glass apparatus, $10(1.16 \mathrm{~g}, 2 \mathrm{mmol}$ in 50 ml of THF) was stirred with magnesium ($0.5 \mathrm{~g}, 20$ mmol) at $50^{\circ} \mathrm{C}$ for 10 days. After settling of the magnesium(amalgam), the clear and colorless supernatant liquid was decanted. Titration of an aliquot (6.90 ml) showed the presence of 0.5 equiv. Mg^{2+} and no basic
material ($<0.01 \mathrm{mmol}$), suggesting a complete symmetrization of 10 to 11 . The remaining solution was quenched with $\mathrm{D}_{2} \mathrm{O}$ (about 1 ml) and evaporated to dryness. After the addition of water the organic material was extracted with dichloromethane. The extract was dried, filtered and evaporated to dryness to give solid 11 (vide supra, $>95 \%$ pure according to ${ }^{1} \mathrm{H}$ NMR spectroscopy, $\mathrm{CDCl}_{3}, 90 \mathrm{MHz}$), in almost quantitative yield.

3.7. (2-Methylmercurio-1,3-xylylene)-18-crown-5 (12)

A mixture of a solution of $10(1 \mathrm{mmol}, 576 \mathrm{mg})$ in THF (25 ml , distilled from IiAlH_{4}) with magnesium metal (200 mg , about 8 mmol) was stirred under argon and methyl iodide ($300 \mu \mathrm{l}$, about 5 mmol) was added from a syringe. After formation of the Grignard reagent, the colorless and clear solution was stirred for 60 h . The mixture was evaporated to dryness, water (50 ml) and 1 g of $\mathrm{NH}_{4} \mathrm{Cl}$ were added, and the organic material extracted with dichloromethane. The extract was dried, filtered, and evaporated to dryness. The product (0.35 g , colorless oil) crystallized out slowly upon standing. According to ${ }^{1} \mathrm{H}$ NMR spectroscopy $\left(\mathrm{CHCl}_{3}, 90 \mathrm{MHz}\right.$), a mixture of (2-methylmercurio-1,3-xylylene)-18-crown-5 (12, $80 \mathrm{mmol} \%, 61 \%$ yield relative to 10) and hydrolysis product ($14,20 \mathrm{~mol} \%$) was obtained. Compound 12 could be purified to some extent by crystallization from diethyl ether at $-20^{\circ} \mathrm{C}$ (m.p. $56-57^{\circ} \mathrm{C}$), although a complete removal of 14 was not achieved.

Compound 12 proved to be quite stable at room temperature towards disproportionation to 11 and dimethylmercury. After 1 month, solid 12 was contaminated with $<5 \%$ of 11 according to ${ }^{1} \mathrm{H}$ NMR spectroscopy $\left(\mathrm{CDCl}_{3}, 90 \mathrm{MHz}\right)$.

12: ${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, ref. $\mathrm{CHCl}_{3}=7.27$ ppm): $\delta 0.51\left(\mathrm{~s},{ }^{2} J\left({ }^{199} \mathrm{Hg}-\mathrm{H}\right)=122 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}\right) ; 3.53-$ $3.76\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{C}_{2} \mathrm{H}_{4}\right) ; 4.33(2 \times \mathrm{d}$, A part of AB , ${ }^{2} J=12 \mathrm{~Hz}, 2 \mathrm{H}$, xylyl- CH_{2}); 4.76 (d, B part of AB , ${ }^{2} J=12 \mathrm{~Hz}, 2 \mathrm{H}$, xylyl- CH_{2}); $7.10\left(\mathrm{t},{ }^{3} J=7 \mathrm{~Hz}, 1 \mathrm{H}\right.$, xylyl-H(5)); $7.20\left(\mathrm{~d},{ }^{3} \mathrm{~J}=7 \mathrm{~Hz}, 2 \mathrm{H}\right.$, xylyl-H(4,6)). ${ }^{13} \mathrm{C}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$, ref. $\left.\mathrm{CDCl}_{3}=77 \mathrm{ppm}\right): \delta 1.20$ $\left(\mathrm{q},{ }^{1} J(\mathrm{C}-\mathrm{H})=130 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{Me}\right) ; 68.4\left(\mathrm{t},{ }^{1} J(\mathrm{C}-\mathrm{H})=140\right.$ $\left.\mathrm{Hz}, 2 \mathrm{C}, \mathrm{C}_{2} \mathrm{H}_{4}\right) ; 70.5\left(\mathrm{t},{ }^{1} \mathrm{~J}(\mathrm{C}-\mathrm{H})=140 \mathrm{~Hz}, 6 \mathrm{C}, \mathrm{C}_{2} \mathrm{H}_{4}\right)$; $75.7\left(\mathrm{t},{ }^{1} \mathrm{~J}(\mathrm{C}-\mathrm{H})=141 \mathrm{~Hz}, 2 \mathrm{C}\right.$, xylyl- $\left.\mathrm{CH}_{2}\right) ; 126.2(\mathrm{~d}$, $\left.{ }^{1} J(\mathrm{C}-\mathrm{H})=160 \mathrm{~Hz}, 1 \mathrm{C}, \operatorname{xylyl}(5)\right), 127.7\left(\mathrm{~d},{ }^{1} J(\mathrm{C}-\mathrm{H})=\right.$ $155 \mathrm{~Hz}, 2 \mathrm{C}$, xylyl(4,6)); 146.0 (s, 2C, xylyl(1,3)), 178 (s, low intensity, 1C, xylyl(2)). GLC-MS mass spectrum: m / z (rel. intensity) $497\left(100, \mathrm{C}_{16} \mathrm{H}_{23} \mathrm{O}_{5} \mathrm{Hg}, \mathrm{M}^{+}-\mathrm{Me}\right.$), 321(3), 307(18), 217(10), 145(21), 119(26), 103(77), 91(26), 77(44), 45(52).
3.8. Bis[(1,3-xylylene-15-crown-4)-2-yl]mercury (13)

To a stirred suspension of mercurous bromide (2 mmol, 0.56 g) in a solution of $1(2 \mathrm{mmol}, 0.66 \mathrm{~g})$ in

THF (50 ml) at $-60^{\circ} \mathrm{C}$, n-butyllithium (2 mmol , in 1.56 ml of n -hexane) was added within 2 min. The mixture gradually turned black owing to the formation of dispersed mercury. After stirring for a further 0.5 h at $-60^{\circ} \mathrm{C}$, the mixture was warmed to room temperature and filtered through a small $\mathrm{Al}_{2} \mathrm{O}_{3}$ column (Merck 90 , activity II-III, $1 \times 10 \mathrm{~cm}$). The filtrate was evaporated to dryness to leave a colorless solid (0.64 g). According to ${ }^{1} \mathrm{H}$ NMR spectroscopy $\left(\mathrm{CDCl}_{3}, 90 \mathrm{MHz}\right)$ this contained 13 together with crown ether hydrolysis product 5 and n-butylmercury bromide. Pure 13 was obtained by recrystallization from acetone ($0.40 \mathrm{~g}, 57 \%$ yield).

13: Colorless crystalline solid, m.p. $210^{\circ} \mathrm{C}$, sublimation (1 bar) starting at about $200^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (250 $\mathrm{MHz}, \mathrm{CDCl}_{3}$, ref. $\left.\mathrm{CHCl}_{3}=7.27 \mathrm{ppm}\right): \delta 3.28-3.36(\mathrm{~m}$, $\left.4 \mathrm{H}, \mathrm{C}_{2} \mathrm{H}_{4}\right) ; 3.46-3.75\left(\mathrm{~m}, 20 \mathrm{H}, \mathrm{C}_{2} \mathrm{H}_{4}\right) ; 4.80(2 \times \mathrm{d}$, $\mathrm{AB}, \Delta \delta=1.13 \mathrm{ppm},{ }^{2} J=12 \mathrm{~Hz}, 8 \mathrm{H}$, xylyl- $\left.\mathrm{CH}_{2}\right) ; 7.14$ (t, ${ }^{3} J=7 \mathrm{~Hz}, 2 \mathrm{H}$, xylyl-H(5)); $7.28\left(\mathrm{~d},{ }^{3} J=7 \mathrm{~Hz}, 4 \mathrm{H}\right.$, xylyl-H(4,6)). ${ }^{13} \mathrm{C}$ NMR ($62.89 \mathrm{MHz}, \mathrm{CDCl}_{3}$, ref. $\left.\mathrm{CDCl}_{3}=77 \mathrm{ppm}\right): \delta 68.1\left(\mathrm{t},{ }^{1} J(\mathrm{C}-\mathrm{H})=141 \mathrm{~Hz}, 4 \mathrm{C}\right.$, $\left.\mathrm{C}_{2} \mathrm{H}_{4}\right) ; 70.3\left(\mathrm{t},{ }^{1} \mathrm{~J}(\mathrm{C}-\mathrm{H})=141 \mathrm{~Hz}, 4 \mathrm{C}, \mathrm{C}_{2} \mathrm{H}_{4}\right) ; 70.5(\mathrm{t}$, $\left.{ }^{1} J(\mathrm{C}-\mathrm{H})=141 \mathrm{~Hz}, 4 \mathrm{C}, \mathrm{C}_{2} \mathrm{H}_{4}\right) ; 75.8\left(\mathrm{t},{ }^{1} J(\mathrm{C}-\mathrm{H})=142\right.$ Hz, Hg satellites ${ }^{3} J\left(\mathrm{C}-{ }^{199} \mathrm{Hg}\right)=66 \mathrm{~Hz}, 4 \mathrm{C}$, xylyl $\left.-\mathrm{CH}_{2}\right)$; $125.3\left(\mathrm{~d},{ }^{1} J(\mathrm{C}-\mathrm{H})=159 \mathrm{~Hz}, 2 \mathrm{C}\right.$, xylyl(5)); 128.9 (d, ${ }^{1} J(\mathrm{C}-\mathrm{H})=158 \mathrm{~Hz}, \mathrm{Hg}$ satellites ${ }^{3} J\left(\mathrm{C}-{ }^{199} \mathrm{Hg}\right)=92 \mathrm{~Hz}$, 4 C , xylyl(4,6)); $145.9\left(\mathrm{~s}, \mathrm{Hg}\right.$ satellites ${ }^{2} J\left(\mathrm{C}-{ }^{199} \mathrm{Hg}=51\right.$ $\mathrm{Hz}, 4 \mathrm{C}$, xylyl(1,3)); 173.8 (s, 2C, xylyl(2)). MS (CI, NH_{3}, Finnigan MAT 90); m / z (rel. intensity) 722 (17, M$\mathrm{NH}_{4}^{+}, \mathrm{C}_{28} \mathrm{H}_{42} \mathrm{O}_{8} \mathrm{HgN}$); 470 (37, aryl $-\mathrm{Hg}^{+} \cdot \mathrm{NH}_{3}$); 453 (10, aryl- Hg^{+}); $270\left(100\right.$, aryl $\left.-\mathrm{H} \cdot \mathrm{NH}_{4}^{+}\right)$. Anal. Found: C, $47.73, \mathrm{H}, 5.55 ; \mathrm{Hg}, 28.38 . \mathrm{C}_{28} \mathrm{H}_{38} \mathrm{O}_{8} \mathrm{Hg}$ calcd.: C , $47.83 ; \mathrm{H}, 5.45 ; \mathrm{Hg}, 28.53 \%$.

3.9. (2-D-1,3-Xylylene)-18-crown-5 (14a)

A solution of $4(2 \mathrm{mmol}, 25 \mathrm{ml}$ THF) was treated with a large excess ($250 \mu \mathrm{~L}$) of EtOD. Standard workup gave a colorless oil (0.65 g), which crystallized upon standing. Analysis by ${ }^{1} \mathrm{H}$ NMR spectroscopy $(90 \mathrm{MHz}$, CDCl_{3}) and GLC-MS revealed the quantitative formation of the deuterated compound 14a. The solid material was recrystallized from diethyl ether at $-20^{\circ} \mathrm{C}$ (m.p. $43-44^{\circ} \mathrm{C}, 0.51 \mathrm{~g}$). The spectroscopic data for 14 a were in accord with those reported previously [1].

3.10. (2-Trimethylstannyl-1,3-xylylene)-18-crown-5 (15)

Upon mixing a suspension of 4 in THF with a small excess of chlorotrimethylstannane the insoluble starting material disappeared within 10 s . Aqueous sodium hydroxide was added to destroy the residual chlorotrimethylstannane before the usual workup. The product, a colorless oil, was identified by ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3} 250\right.$ MHz) as pure 15; the ${ }^{1} \mathrm{H}$ NMR spectrum was in accord with data obtained before [1]. The product solidified on standing; recrystallization from ethanol gave material of m.p. $42-43^{\circ} \mathrm{C}$.

3.11. (2-Iodo-1,3-xylylene)-18-crown-5 (16)

A slight excess of iodine was added to a suspension of 4 in THF. Prior to extraction with dichloromethane, sodium hydroxide solution was added to destroy the excess of iodine. The crude product was an almost colorless oil, which solidified upon cooling ($+5^{\circ} \mathrm{C}$); it was identified as pure ($>95 \%$) (2-iodo-1,3-xylylene)-18-crown-5 (16); crystallization from ethanol ($-60^{\circ} \mathrm{C}$) gave material of m.p. $45^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, ref. $\left.\mathrm{CHCl}_{3}=7.27 \mathrm{pm}\right): \delta 3.5-3.56\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{C}_{2} \mathrm{H}_{4}\right) ; 3.62$ $\left(\mathrm{s}, 8 \mathrm{H}, \mathrm{C}_{2} \mathrm{H}_{4}\right) ; 4.67\left(\mathrm{~s}, 4 \mathrm{H}\right.$, xylyl- $\left.\mathrm{CH}_{2}\right) ; 7.26(\mathrm{~s}, 3 \mathrm{H}$, xylyl-H). The ${ }^{1} \mathrm{H}$ NMR spectrum of 16 differs only slightly from that of the corresponding bromide 2 . Mass spectrum (direct inlet): m / z (rel. intensity) 422 $\left(\mathrm{M}^{+}, 13\right), 295\left(\mathrm{M}^{+}-\mathrm{I}, 26\right), 230(46), 177(41), 133(30)$, $119(32), 103(42), 89(100), 77(15), 56(19)$.

3.12. (2-(Diphenylhydroxy)methyl-1,3-xylylene(-18-

 crown-5 (17)A solution of $1 \mathrm{mmol}(0.18 \mathrm{~g})$ of benzophenone in THF (5 ml) was added during 5 min to a solution of 9 (2 mmol , in 25 ml THF) at $-60^{\circ} \mathrm{C}$. The greenish mixture was allowed to warm to room temperature overnight, during which a white precipitate was formed. The mixture was diluted with water (250 ml), and the organic material extracted with dichloromethane. After evaporation of the solvent, crude (2 -(diphenylhydroxy-methyl)-1,3-xylylene)-18-crown-5 (17) was obtained as a cloudy oil (1.15 g). Crystallization from acetone yielded a colorless solid (0.77 g, m.p. $106^{\circ} \mathrm{C}$, yield 80%).

17: ${ }^{1} \mathrm{H}$ NMR (250 MHz): $\delta 3.08-3.29\left(\mathrm{~m}, \mathrm{~A}_{2} \mathrm{~B}_{2}, 4 \mathrm{H}\right.$, $\left.\mathrm{C}_{2} \mathrm{H}_{4}\right) ; 3.41-3.69\left(\mathrm{~m}, 10 \mathrm{II}, \mathrm{C}_{2} \mathrm{H}_{4}\right) ; 3.89(\mathrm{~m}, \mathrm{AB}, \Delta \delta=$ $0.53,{ }^{2} J=13 \mathrm{~Hz}, 4 \mathrm{H}$, xylyl- CH_{2}); 5.26 (s, broad, 1 H , $\mathrm{OH}) ; 7.07-7.37(\mathrm{~m}, 9 \mathrm{H}$, phenyl-H and xylyl-H); 7.52 (d, ${ }^{3} J=7 \mathrm{~Hz}, 4 \mathrm{H}$, phenyl-H(2,6)). ${ }^{13} \mathrm{C}$ NMR (62.89 $\mathrm{MHz}): \delta 67.4\left(\mathrm{t},{ }^{1} J(\mathrm{C}-\mathrm{H})=139 \mathrm{~Hz}, 4 \mathrm{C}, \mathrm{C}_{2} \mathrm{H}_{4}\right) ; 69.4(\mathrm{t}$, $\left.{ }^{1} J(\mathrm{C}-\mathrm{H})=140 \mathrm{~Hz}, 4 \mathrm{C}, \mathrm{C}_{2} \mathrm{H}_{4}\right) ; 70.2\left(\mathrm{t},{ }^{1} J(\mathrm{C}-\mathrm{H})=141\right.$ $\left.\mathrm{Hz}, 4 \mathrm{C}, \mathrm{C}_{2} \mathrm{H}_{4}\right) ; 70.4\left(\mathrm{t},{ }^{1} J(\mathrm{C}-\mathrm{H})=141 \mathrm{~Hz}, 4 \mathrm{C}, \mathrm{C}_{2} \mathrm{H}_{4}\right)$; $72.0\left(\mathrm{t},{ }^{1} J(\mathrm{C}-\mathrm{H})=144 \mathrm{~Hz}, 4 \mathrm{C}\right.$, xylyl- $\left.\mathrm{CH}_{2}\right) ; 79.9(\mathrm{~s}, 1 \mathrm{C}$, $\left.\mathrm{C}_{\text {quat. }}\right) ; 125.6\left(\mathrm{~d},{ }^{1} J(\mathrm{C}-\mathrm{H})=159 \mathrm{~Hz}, 6 \mathrm{C}\right.$, aryl-C); 126.7 $\left(\mathrm{d},{ }^{1} J(\mathrm{C}-\mathrm{H})=161 \mathrm{~Hz}, 1 \mathrm{C}\right.$, xylyl-C(5)); $127.6\left(\mathrm{~d},{ }^{1} J(\mathrm{C}-\right.$ $\mathrm{H})=159 \mathrm{~Hz}, 4 \mathrm{C}$, phenyl-C); $130.2\left(\mathrm{~d},{ }^{1} J(\mathrm{C}-\mathrm{H})=160\right.$ $\mathrm{Hz}, 2 \mathrm{C}$, xylyl-C(4,6)); 139.9 (s, 2C, aryl-C); 145.2 (s, 1C, xylyl-C(2)); 149.8 (s, 2C, aryl-C). MS (direct inlet, Varian MAT CH5 DF): extensive fragmentation occurred; no parent ion was observed.

The identity of $\mathbf{1 7}$ was confirmed by conversion into its methyl ether. In a three-necked flask (50 ml) under nitrogen, potassium hydride (8 mmol) was washed free from paraffin with THF (three portions of 5 ml) and suspended in THF (25 ml). To the stirred mixture, solid 17 ($1 \mathrm{mmol}, 478 \mathrm{mg}$) was added in one portion. When the evolution of hydrogen had ceased (0.5 h), methyl iodide ($2 \mathrm{mmol}, 0.28 \mathrm{~g}, 125 \mu \mathrm{I}$) was added from
a syringe. After a further 1.5 h stirring, water (1 ml) was added and the mixture evaporated to dryness. After the addition of 25 ml of water, the organic products were extracted with dichloromethane. The extract was dried, filtered, and evaporated to dryness to yicld a ycllowish oil (0.49 g). According to ${ }^{1} \mathrm{H}$ NMR spectroscopy, the conversion of 17 into (2-(1,1-di-phenyl-2-oxapropyl)-1,3-xylylene)-18-crown-5 (17a) was almost complete. Recrystallization from diethyl ether $\left(-20^{\circ} \mathrm{C}\right)$ yielded 0.39 g of $17 \mathrm{a}(79 \%$, colorless solid, m.p. $85^{\circ} \mathrm{C}$).

17a: ${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, ref. $\mathrm{CHCl}_{3}=7.27$ ppm): $\delta 2.98-3.05\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{2} \mathrm{H}_{4}\right) ; 3.20-3.43(\mathrm{~m}, 14 \mathrm{H}$, $\mathrm{C}_{2} \mathrm{H}_{4}$); 3.21 ($\mathrm{s}, 3 \mathrm{H}$, OMe); $4.10(\mathrm{~m}, \mathrm{AB}, \Delta \delta=0.09$ ppm, ${ }^{2} J=13 \mathrm{~Hz}, 4 \mathrm{H}$, aryl- $\left.\mathrm{CH}_{2}\right) ; 7.24-7.42(\mathrm{~m}, 11 \mathrm{H}$, aryl-H); 7.59 (d, ${ }^{3} J=8 \mathrm{~Hz}, 2 \mathrm{H}$, xylyl-H(4,6)). ${ }^{13} \mathrm{C}$ NMR ($62.89 \mathrm{MHz}, \mathrm{CDCl}_{3}$, ref. $\mathrm{CDCl}_{3}=77 \mathrm{ppm}$): δ $52.2\left(\mathrm{q},{ }^{1} J(\mathrm{C}-\mathrm{H})=142 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{OMe}\right) ; 69.7\left(\mathrm{t},{ }^{1} J(\mathrm{C}-\mathrm{H})\right.$ $\left.=142 \mathrm{~Hz}, 2 \mathrm{C}, \mathrm{C}_{2} \mathrm{H}_{4}\right) ; 70.0\left(\mathrm{t},{ }^{1} \mathrm{~J}(\mathrm{C}-\mathrm{H})=139 \mathrm{IIz}, 2 \mathrm{C}\right.$, $\left.\mathrm{C}_{2} \mathrm{H}_{4}\right) ; 70.3\left(\mathrm{t},{ }^{1} J(\mathrm{C}-\mathrm{H})=142 \mathrm{~Hz}, 4 \mathrm{C}, \mathrm{C}_{2} \mathrm{H}_{4}\right) ; 71.4(\mathrm{t}$, ${ }^{1} J(\mathrm{C}-\mathrm{H})=148 \mathrm{~Hz}, 2 \mathrm{C}$, aryl- $\left.\mathrm{CH}_{2}\right) ; 87.2\left(\mathrm{~s}, 1 \mathrm{C}, \mathrm{C}_{\text {quat }}\right)$; $127.0\left(\mathrm{~d},{ }^{1} J(\mathrm{C}-\mathrm{H})=160 \mathrm{~Hz}, 2 \mathrm{C}\right.$, aryl-C); $127.1(\mathrm{~d}$, ${ }^{1} J(\mathrm{C}-\mathrm{H})=161 \mathrm{~Hz}, 1 \mathrm{C}$, xylyl-C(5)); $127.8\left(\mathrm{~d},{ }^{1} J(\mathrm{C}-\mathrm{H})\right.$ $=165 \mathrm{~Hz}, 4 \mathrm{C}$, phenyl-C); $128.0\left(\mathrm{~d},{ }^{1} J(\mathrm{C}-\mathrm{H})=160 \mathrm{~Hz}\right.$, 4 C , phenyl-C); $129.1\left(\mathrm{~d},{ }^{1} J(\mathrm{C}-\mathrm{H})=165 \mathrm{~Hz}, 2 \mathrm{C}\right.$, arylC); 140.0 ($s, 1 \mathrm{C}$, xylyl-C(2)); 140.4 (s, 2C, aryl-C); 144.5 (s, 2C, aryl-C). Anal. Found: C, $72.40 ; \mathrm{H}, 7.26$. $\mathrm{C}_{30} \mathrm{H}_{36} \mathrm{O}_{6}$ calcd.: $\mathrm{C}, 73.15 ; \mathrm{H}, 7.37 \%$.

3.13. Preparation of (2-(diphenylhydroxy)methyl-1,3-xylylene)-18-crown-5 (17) from 4

In a fully sealed glass ampoule, a suspension of ca. 2 mmol of 4 in 5 ml of THF was treated with benzophenone ($0.36 \mathrm{~g}, 2 \mathrm{mmol}$) at $80^{\circ} \mathrm{C}$ for 5 h , during which the insoluble 4 gradually disappeared. Before all the 4 had dissolved, a new colorless product suddenly crystallized out. After cooling to room temperature, the contents of the ampoule were quenched with an excess (about 1 ml) of deuterium oxide. Diluted hydrochloric acid was added, and the organic products were extracted with dichloromethane. The extract was dried, filtered and evaporated to dryness to leave 1.40 g of a colorless oil. According to ${ }^{1} \mathrm{H}$ NMR spectroscopy ($90 \mathrm{MHz}, \mathrm{CDCl}_{3}$), a mixture of $\mathbf{1 7}$ (vide supra, about 75%) and $\mathbf{1 4 a}$ (about 25%, frec of 14) was present. Titration of the aqueous phase of the extraction showed the presence of 2.76 $\mathrm{mmol} \mathrm{Mg}^{2+}$, indicating that the amount of 4 used was larger than intended. Crystallization of 17 was from diethyl ether at $-20^{\circ} \mathrm{C}$ gave material of m.p. $106^{\circ} \mathrm{C}$ ($0.73 \mathrm{~g}, 76 \%$ yield).

3.14. (2-Trimethylgermyl-1,3-xylylene)-18-crown-5 (18)

A solution of $9(2 \mathrm{mmol}$ in 25 ml of THF) was treated with chlorotrimethylgermane ($250 \mu \mathrm{l}, 0.31 \mathrm{~g}, 2$
$\mathrm{mmol})$ at $-60^{\circ} \mathrm{C}$. The mixture was allowed to warm up slowly (about 2 h), quenched with water. The product was isolated by the standard workup as a colorless oil $(0.90 \mathrm{~g})$. According to ${ }^{1} \mathrm{H}$ NMR spectroscopy $\left(\mathrm{CDCl}_{3}\right.$, 90 MHz), about 90% of $\mathbf{1 8}$ had been formed, together with 10% of 14. Recrystallization from n-pentane at $-20^{\circ} \mathrm{C}$ yielded pure 18 as a white solid $(0.68 \mathrm{~g}, 82 \%$, m.p. $35-36^{\circ} \mathrm{C}$).

18: ${ }^{1} \mathrm{H}$ NMR (250 MHz): $\delta 0.58$ (s, $9 \mathrm{H}, \mathrm{Me}$); 3.39$3.60\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{C}_{2} \mathrm{H}_{4}\right) ; 4.63(\mathrm{M}, \mathrm{AB}, \Delta \delta=0.80 \mathrm{ppm}$, ${ }^{2} J=12 \mathrm{~Hz}, 4 \mathrm{H}$, aryl $\left.-\mathrm{CH}_{2}\right) ; 7.20-7.22(\mathrm{~m}, 3 \mathrm{HI}$, aryl-H). ${ }^{13} \mathrm{C}$ NMR (62.89 MHz): $\delta 3.4\left(\mathrm{q},{ }^{1} J(\mathrm{C}-\mathrm{H})=125 \mathrm{~Hz}\right.$, 3C, Me); $68.4\left(\mathrm{t},{ }^{1} \mathrm{~J}(\mathrm{C}-\mathrm{H})=139 \mathrm{~Hz}, 2 \mathrm{C}, \mathrm{C}_{2} \mathrm{H}_{4}\right) ; 70.1(\mathrm{t}$, $\left.{ }^{1} J(\mathrm{C}-\mathrm{H})=142 \mathrm{~Hz}, 2 \mathrm{C}, \mathrm{C}_{2} \mathrm{H}_{4}\right) ; 70.3\left(\mathrm{t},{ }^{1} J(\mathrm{C}-\mathrm{H})=142\right.$ $\left.\mathrm{Hz}, 4 \mathrm{C}, \mathrm{C}_{2} \mathrm{H}_{4}\right) ; 74.1\left(\mathrm{t},{ }^{1} J(\mathrm{C}-\mathrm{H})=141 \mathrm{~Hz}, 2 \mathrm{C}\right.$, aryl$\left.\mathrm{CH}_{2}\right) ; 127.3\left(\mathrm{~d},{ }^{1} J(\mathrm{C}-\mathrm{H})=160 \mathrm{~Hz}, 1 \mathrm{C}\right.$, aryl-C(5)); $129.6\left(\mathrm{dm},{ }^{1} J(\mathrm{C}-\mathrm{H})=158 \mathrm{~Hz}, 2 \mathrm{C}\right.$, aryl-C(4,6)); 142.6 (s, 1C, aryl-C(2)); 144.7 (s, 2C, aryl-C(1,3)). GLC-MS mass spectrum: m / z (rel. intensity) 414 ($2, \mathrm{M}^{+}$), 399 (100, $\left.\mathrm{M}^{+}-\mathrm{Me}\right), 237(10), 223(46), 207(19), 193(10)$, 177(8), 163(8), 147(8), 133(13), 117(82), 104(43), 91(21), 89(26), 87(39), 45(82). Anal. Found: C, 55.32; H, 7.71. $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{O}_{5} \mathrm{Ge}$ calcd.: C, $55.25 ; \mathrm{H}, 7.81 \%$.
3.15. (2-Diphenylphosphinyl-1,3-xylylene)-18-crown-5 (19) and (2-oxodiphenylphosphinyl-1,3-xylylene)-18-crown-5 (20)

To a solution of $9(2 \mathrm{mmol}$ in 25 ml of THF) at $-60^{\circ} \mathrm{C}$, chlorodiphenylphosphine (1.2 equiv., 0.54 g , $459 \mu 1$) was added within 2 min ; during which the mixture turned yellow. When the mixture was allowed to warm to room temperature during several hours, the color disappeared. After standing overnight, the mixture was evaporated to dryness, water was added, and the organic material extracted with dichloromethane. The extract was dried and filtered, and the solvent distilled off. A colorless oil (1.45 g) obtained contained about 60% of (2-diphenylphosphinyl-1,3-xylylene)-18-crown-5 (19) according to the ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 90 \mathrm{MHz}\right)$. Purification was performed by gradient column separation $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right.$, Merck $90,1.5 \times 30$ cm , eluent pentane $/ \mathrm{Et}_{2} \mathrm{O} / \mathrm{THF}$). An unknown byproduct was eluted first with 200 ml of a $1: 1$ $\mathrm{Et}_{2} \mathrm{O}$ /pentane mixture. Subsequently, the main product was eluted with $\mathrm{Et}_{2} \mathrm{O}$ containing 10% of THF. After evaporation of the eluent, 19 was obtained as a colorless oil ($0.68 \mathrm{~g}, 71 \%$ yield) and characterized by ${ }^{1} \mathrm{H}$ NMR spectroscopy. In spite of several attempts, 19 could not be crystallized.

19: ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$, ref. $\mathrm{CHCl}_{3}=7.27$ $\mathrm{ppm}): \delta 3.18-3.50\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{C}_{2} \mathrm{H}_{4}\right): 4.10(\mathrm{~d}$, A part of $\mathrm{AB},{ }^{2} J=12 \mathrm{~Hz}, 2 \mathrm{H}$, xylyl-CH ${ }^{2}$); 4.93 (dd, B part of $\mathrm{AB},{ }^{2} J=12 \mathrm{~Hz},{ }^{4} J\left({ }^{31} \mathrm{P}-\mathrm{H}\right)=3 \mathrm{~Hz}, 2 \mathrm{H}$, xylyl- $\left.\mathrm{CH}_{2}\right) ;$
$7.27-7.53$ ($\mathrm{m}, 13 \mathrm{H}$, aryl-H). Due to its low volatility, GLC-MS analysis was not possible.

In contact with air, both pure and in solution, 19 was slowly oxidized (in about 1 year) quantitatively to the corresponding oxide (2-oxodiphenylphosphinyl-1,3-xylylene)-18-crown-5 (20), a water-soluble colorless oil.

20: ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$, ref. $\mathrm{CHCl}_{3}=7.27$ ppm): $\delta 3.11-3.18\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{2} \mathrm{H}_{4}\right) ; 3.24-3.46(\mathrm{~m}, 14 \mathrm{H}$, $\mathrm{C}_{2} \mathrm{H}_{4}$); 4.11 (d, A part of $\mathrm{AB},{ }^{2} J=13 \mathrm{~Hz}, 2 \mathrm{H}$, xylyl$\mathrm{CH}_{2}$); 4.51 (d, B part of $\mathrm{AB},{ }^{2} J=13 \mathrm{~Hz}, 2 \mathrm{H}$, xylyl$\left.\mathrm{CH}_{2}\right) ; 7.44-7.55(\mathrm{~m}, 9 \mathrm{H}$, phenyl- $\mathrm{H}(2,6)$ and xylyl-H); $7.75-7.84$ (m, 4H, phenyl-H(3,5)).
${ }^{13} \mathrm{C}$ NMR ($62.89 \mathrm{MHz}, \mathrm{CDCl}_{3}$, ref. $\mathrm{CDCl}_{3}=77$ $\mathrm{ppm}): \delta 69.5\left(\mathrm{t},{ }^{1} J(\mathrm{C}-\mathrm{H})=141 \mathrm{~Hz}, 2 \mathrm{C}, \mathrm{C}_{2} \mathrm{H}_{4}\right) ; 70.0(\mathrm{t}$, $\left.{ }^{1} J(\mathrm{C}-\mathrm{H})=141 \mathrm{~Hz}, 2 \mathrm{C}, \mathrm{C}_{2} \mathrm{H}_{4}\right) ; 70.4\left(\mathrm{t},{ }^{1} J(\mathrm{C}-\mathrm{H})=141\right.$ $\left.\mathrm{Hz}, 2 \mathrm{C}, \mathrm{C}_{2} \mathrm{H}_{4}\right) ; 70.7\left(\mathrm{t},{ }^{1} J(\mathrm{C}-\mathrm{H})=141 \mathrm{~Hz}, 2 \mathrm{C}, \mathrm{C}_{2} \mathrm{H}_{4}\right)$; $72.1\left(\mathrm{td},{ }^{1} J(\mathrm{C}-\mathrm{H})=144 \mathrm{~Hz},{ }^{3} \mathrm{~J}\left(\mathrm{C}-{ }^{31} \mathrm{P}\right)=4 \mathrm{~Hz}, 2 \mathrm{C}\right.$, xylyl- CH_{2}); $128.4\left(\mathrm{dd},{ }^{1} J(\mathrm{C}-\mathrm{H})=151 \mathrm{~Hz},{ }^{3} \mathrm{~J}\left(\mathrm{C}-{ }^{31} \mathrm{P}\right)=\right.$ $12 \mathrm{~Hz}, 4 \mathrm{C}$, phenyl(3)); $129.7\left(\mathrm{dd},{ }^{1} J(\mathrm{C}-\mathrm{H})=147 \mathrm{~Hz}\right.$, $\left.{ }^{3} J\left(\mathrm{C}-{ }^{31} \mathrm{P}\right)=10 \mathrm{~Hz}, 2 \mathrm{C}, \operatorname{xyly}(4,6)\right) ; 131.1\left(\mathrm{dd},{ }^{1} J(\mathrm{C}-\mathrm{H})\right.$ $=161 \mathrm{~Hz},{ }^{4} J\left(\mathrm{C}-{ }^{31} \mathrm{P}\right)=2 \mathrm{~Hz}, 1 \mathrm{C}$, xylyl(5)); 131.5 (dd, ${ }^{1} J(\mathrm{C}-\mathrm{H})=159 \mathrm{~Hz},{ }^{4} J\left(\mathrm{C}-{ }^{31} \mathrm{P}\right)=2 \mathrm{~Hz}, 2 \mathrm{C}$, phenyl(4)); $131.9\left(\mathrm{dd},{ }^{1} J(\mathrm{C}-\mathrm{H})=157 \mathrm{~Hz},{ }^{2} J\left(\mathrm{C}-{ }^{31} \mathrm{P}\right)=10 \mathrm{~Hz}, 4 \mathrm{C}\right.$, phenyl(2)); $134.8\left(\mathrm{~d},{ }^{1} J\left(\mathrm{C}-{ }^{31} \mathrm{P}\right)=103 \mathrm{~Hz}, 2 \mathrm{C}\right.$, phenyl(1)); $144.7\left(\mathrm{~d},{ }^{2} J\left(\mathrm{C}-{ }^{31} \mathrm{P}\right)=9 \mathrm{~Hz}, 2 \mathrm{C}\right.$, xylyl(1,3)). Probably due to a very long relaxation time, xylyl(2) is not visible. ${ }^{31} \mathrm{P}$ NMR ($101.2 \mathrm{MHz}, \mathrm{BB}, \mathrm{CDCl}_{3}$, ref. $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ external $=0 \mathrm{ppm}$): δ 30.52. MS (direct inlet, Finnigan CH5): m / z (relative intensity) 496 (52, $\left.\mathrm{M}^{+}, \mathrm{C}_{28} \mathrm{H}_{33} \mathrm{O}_{6} \mathrm{P}\right), 335(10), 320(89), 318(100), 303(20)$, 291(13), 165(20), 105(20), 89(25), 78(22). Molecular ion mass calcd. for $\mathrm{C}_{28} \mathrm{H}_{33} \mathrm{O}_{6} \mathrm{P}: 496.201$. Found: 496.202.
3.16. (2-(4,4'-Dimethoxydiphenylhydroxymethyl)-1,3-xylylene)-18-crown-5 (21)

To a solution of 9 (2 mmol in 50 ml of THF) at $-60^{\circ} \mathrm{C}$, a solution of $4,4^{\prime}$-dimethoxybenzophenone (2 $\mathrm{mmol}, 0.48 \mathrm{~g}$) in THF (10 ml) was added during 5 min . The mixture was allowed to warm overnight to room temperature, and subsequently evaporated to dryness. The residue was transferred to a separatory funncl containing water and dichloromethane. Brine was added, and all the organic material was extracted into the dichloromethane. After evaporation of the solvent, crude [2-(4,4'-dimethoxy-diphenylhydroxymethyl)-1,3-xylylene]-18-crown-5 (21) was obtained as a waxy solid (1.20 g) that slowly turned slightly red on contact with air. The solid was washed with diethyl ether; 0.62 g of 21 remained (m.p. $126^{\circ} \mathrm{C}$, yield 58%). According to ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy, its purity was $>95 \%$. Recrystallization proved to be impossible due to interference by the methanol-elimination reaction (vide infra).

TABLE 4. Crystal data and details of the structure determination

	4	10	11
Crystal data			
Empirical formula	$\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{BrMgO}_{5}$	$\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{BrHgO}_{5}$	$\mathrm{C}_{32} \mathrm{H}_{46} \mathrm{HgO}_{10}$
Formula weight	399.56	575.85	791.30
Crystal system	Triclinic	Monoclinic	Monoclinic
Space group	$P \overline{1}$ (No. 2)	$P 2_{1} / n$ (No. 14)	$P 2_{1} / n$ (No. 14)
$a, b, c(\AA)$	10.016(1), 12.804(1), 15.172(1)	$12.249(2), 8.5030(10), 17.461(3)$	$9.6230(10), 8.831(5), 19.400(10)$
$\alpha, \beta, \gamma\left({ }^{\circ}\right)$	$77.77(1), 76.16(1), 70.48(1)$	90,91.390(10), 90	90, 96.52(3), 90
$V\left(\AA^{3}\right)$	1762.1(3)	1818.1(5)	1638.0 (13)
z	4	4	2
$D_{\text {calc. }}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	1.506	2.104	1.604
$F(000)$ (electrons)	824	1096	796
$\mu\left(\mathrm{cm}^{-1}\right)$	37.4	106.6	47.5
Crystal size (mm)	$0.50 \times 0.62 \times 0.88$	$0.25 \times 0.45 \times 0.55$	$0.30 \times 0.45 \times 0.50$
Data collection			
Temperature (K)	295	295	295
Radiation (A)	$\mathrm{CuK} \alpha(\mathrm{Ni}) 1.54184$	Mo $\mathrm{K} \alpha(\mathrm{Zr}) 0.71073$	Mo $\mathrm{K} \alpha$ (Zr) 0.71073
Theta min-max (${ }^{\circ}$)	3.0, 70.0	1.17, 27.5	1.05, 27.5
Scan type	$\omega-2 \theta$	$\omega-2 \theta$	$\omega-2 \theta$
Scan (${ }^{\circ}$)	$0.50+0.15 \tan (\theta)$	$0.40+0.35 \tan (\theta)$	$0.60+0.35 \tan (\theta)$
Horizontal and vertical aperture (mm)	3.00, 5.00	4.00, 6.00	3.00, 3.00
Reference reflection(s)	2-2-2, 331 (decay 8%)	507,33-4 (13\% decay)	$103 ; 110 ; 017$ (no decay)
Dataset	-12:11, -15:15, - 18:0	0:15, 0:11, --22:22	0:12;0:11, - $25: 25$
Total unique data	6953, 6682	4646, 4154	4246, 3760
Observed data [$I>2.5 \sigma(I)]$ refinement	4857	3111	2579
$N_{\text {ref }}, N_{\text {par }}$	4857, 436	3110, 209	2577, 198
$R, w R, S$	0.0552, 0.0723, 1.40	0.042, 0.040, 3.28	0.0219, 0.0244, 1.15
Weighting scheme	$w^{-1}=\sigma^{2}(F)$	$w^{1}=\sigma^{2}(F)$	$w^{1}=\sigma^{2}(F)$
Max. and ave-shift/error	0.005, 0.001	0.10, 0.02	0.10, 0.01
Min. and max. residual density (e A^{-3})	$-1.21,0.54$	$-1.24,1.31$	-1.27, 0.86

21: ${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, ref. $\mathrm{CHCl}_{3}=7.27$ ppm): $\delta 3.11-3.30\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}_{2} \mathrm{H}_{4}\right) ; 3.40-3.84(\mathrm{~m}, 12 \mathrm{H}$, $\mathrm{C}_{2} \mathrm{H}_{4}$) ; $3.75(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OMe}) ; 3.57$ (d, A part of AB , ${ }^{2} J=13 \mathrm{~Hz}, 2 \mathrm{H}$, aryl $-\mathrm{CH}_{2}$); 4.21 (d, B part of AB , ${ }^{2} J=13 \mathrm{~Hz}, 2 \mathrm{H}$, aryl $\left.-\mathrm{CH}_{2}\right) ; 5.12(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) ; 6.76(\mathrm{~d}$, A part of $\mathrm{AB},{ }^{3} J=9 \mathrm{~Hz}, 4 \mathrm{H}$, aryl-H); 7.37 (d, B part of $\mathrm{AB},{ }^{3} J=9 \mathrm{~Hz}, 4 \mathrm{H}$, aryl-H); $7.24-7.35(\mathrm{~m}, 3 \mathrm{H}, \mathrm{xylyl}-\mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($62.89 \mathrm{MHz}, \mathrm{CDCl}_{3}$, ref. $\mathrm{CDCl}_{3}=77 \mathrm{ppm}$): $\delta 55.0\left(\mathrm{q},{ }^{1} J(\mathrm{C}-\mathrm{H})=144 \mathrm{~Hz}, 2 \mathrm{C}, \mathrm{OMe}\right) ; 67.7\left(\mathrm{t},{ }^{1} J(\mathrm{C}-\right.$ $\left.\mathrm{H})=138 \mathrm{~Hz}, 2 \mathrm{C}, \mathrm{CH}_{2}\right) ; 69.6\left(\mathrm{t},{ }^{1} J(\mathrm{C}-\mathrm{H})=141 \mathrm{~Hz}, 2 \mathrm{C}\right.$, $\left.\mathrm{CH}_{2}\right) ; 70.4\left(\mathrm{t},{ }^{1} \mathrm{~J}(\mathrm{C}-\mathrm{H})=141 \mathrm{~Hz}, 2 \mathrm{C}, \mathrm{CH}_{2}\right) ; 70.5(\mathrm{t}$, $\left.{ }^{1} J(\mathrm{C}-\mathrm{H})=141 \mathrm{~Hz}, 2 \mathrm{C}, \mathrm{CH}_{2}\right) ; 72.1\left(\mathrm{t},{ }^{1} J(\mathrm{C}-\mathrm{H})=145\right.$ $\mathrm{Hz}, 2 \mathrm{C}$, xylyl $-\mathrm{CH}_{2}$); 79.6 (s, 1C, C-OH); 113.1 (d, ${ }^{1} J(\mathrm{C}-\mathrm{H})=159 \mathrm{~Hz}, 4 \mathrm{C}$, aryl-C(3,5$)$); $126.7\left(\mathrm{~d},{ }^{1} J(\mathrm{C}-\mathrm{H})\right.$ $=158 \mathrm{~Hz}, 1 \mathrm{C}$, xylyl $-\mathrm{C}(5))$; $126.8\left(\mathrm{~d},{ }^{1} J(\mathrm{C}-\mathrm{H})=158 \mathrm{~Hz}\right.$, 4 C , aryl-C $(2,6)) ; 130.2\left(\mathrm{~d},{ }^{1} J(\mathrm{C}-\mathrm{H})\right)=162 \mathrm{~Hz}, 2 \mathrm{C}, \mathrm{xy}-$ lyl-C(4,6)); 140.0 (s, 2C); 142.5 (s, 2C); 145.6 (s, 1C, xylyl-C(2)); 157.6 (s, 2C). MS (DCI, NH_{3}, Finnigan MAT 90): m / z (relative intensity) 556 (100 , $\left.\mathrm{C}_{31} \mathrm{H}_{42} \mathrm{NO}_{8}, \mathrm{M} \cdot \mathrm{NH}_{4}^{+}\right), 540(23), 521\left(10, \mathrm{C}_{31} \mathrm{H}_{37} \mathrm{O}, \mathrm{M}^{+}\right.$ - OH), 391(11), 314(30), 283(24), 243(27). Anal. Found: C, $68.05, \mathrm{H}, 7.03 . \mathrm{C}_{31} \mathrm{H}_{38} \mathrm{O}_{8}$ calcd.: C, 69.13; H, 7.11%.
3.17. \{2-[(4-Methoxyphenyl)(4'-oxo-2',5'-cyclohexylidene) methyll-1,3-xylylene\}-18-crown-5 (22)

In a separatory funnel, a solution of $21(0.10 \mathrm{~g})$ in dichloromethane (10 ml) was shaken for several minutes with dilute $\mathrm{HCl}(5 \%)$. During this operation, the mixture rapidly turned deep red. Upon neutralization by the addition of solid NaHCO_{3}, the color changed to a less intense orange. The organic layer was separated, dried, filtered, and evaporated to dryness to leave a dark-orange powder (about 0.10 g), which was shown to be almost pure ($>95 \%$) 22 by ${ }^{1} \mathrm{H}$ NMR spectroscopy ($\mathrm{CDCl}_{3}, 90 \mathrm{MHz}$). The compound was recrystallized from methanol; m.p. $181-182^{\circ} \mathrm{C}$.

22: ${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, ref. TMS $\left.=0 \mathrm{ppm}\right)$: $\delta 3.30-3.51\left(\mathrm{~m}, 14 \mathrm{H}, \mathrm{C}_{2} \mathrm{H}_{4}\right): 3.63-3.75\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{2} \mathrm{H}_{4}\right)$; 3.82 (s, 3H, OMe); 4.20 (d, A part of $\mathrm{AB},{ }^{2} J=13 \mathrm{~Hz}$, xylyl- CH_{2}); 4.36 (d, B part of AB, ${ }^{2} J=13 \mathrm{~Hz}$, xylyl$\left.\mathrm{CH}_{2}\right) ; 6.44-6.52(\mathrm{~m}, 2 \mathrm{H}$, chin- $\mathrm{H}(3,5)$); $6.97(2 \times \mathrm{d}, \mathrm{AB}$, $\Delta \delta=0.22 \mathrm{ppm},{ }^{3} J=9 \mathrm{~Hz}$, aryl-H); 7.40-7.4975 (m, 3 H , xylyl-H(4-6)); $7.52-7.64\left(\mathrm{~m}, 2 \mathrm{H}\right.$, chin- $\mathrm{H}(2,6)$). ${ }^{13} \mathrm{C}$ NMR (62.89 MHz , DMSO- d_{6}, ref. TMS $=0 \mathrm{ppm}$): δ $55.5\left(\mathrm{q},{ }^{1} J(\mathrm{C}-\mathrm{H})=143 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{OMe}\right) ; 68.8\left(\mathrm{t},{ }^{1} J(\mathrm{C}-\mathrm{H})\right.$
$\left.=142 \mathrm{~Hz}, 2 \mathrm{C}, \mathrm{C}_{2} \mathrm{H}_{4}\right) ; 69.9\left(\mathrm{~s}, 1 \mathrm{C}, \mathrm{C}_{\text {quat. }}\right) ; 70.1(\mathrm{t}$, $\left.{ }^{1} J(\mathrm{C}-\mathrm{H})=141 \mathrm{~Hz}, 4 \mathrm{C} ?, \mathrm{C}_{2} \mathrm{H}_{4}\right) ; 70.2\left(\mathrm{t},{ }^{1} J(\mathrm{C}-\mathrm{H})=141\right.$ $\mathrm{Hz}, 2 \mathrm{C}$?, $\left.\mathrm{C}_{2} \mathrm{H}_{4}\right) ; 70.4\left(\mathrm{t},{ }^{1} \mathrm{~J}(\mathrm{C}-\mathrm{H})=143 \mathrm{~Hz}, 2 \mathrm{C}\right.$, xylyl$\left.\mathrm{CH}_{2}\right) ; 114.3\left(\mathrm{~d},{ }^{1} J(\mathrm{C}-\mathrm{H})=163 \mathrm{~Hz}, 2 \mathrm{C}\right.$, phenyl-C(3,5)); $126.6\left(\mathrm{~d},{ }^{1} J(\mathrm{C}-\mathrm{H})=166 \mathrm{~Hz}, 1 \mathrm{C}\right.$, arom. C-H); $128.0(\mathrm{~d}$, ${ }^{1} J(\mathrm{C}-\mathrm{H})=162 \mathrm{~Hz}, 1 \mathrm{C}$, arom. $\left.\mathrm{C}-\mathrm{H}\right), 128.5\left(\mathrm{~d},{ }^{1} \mathrm{~J}(\mathrm{C}-\mathrm{H})\right.$ $=162 \mathrm{~Hz}, 1 \mathrm{C}$, arom. $\mathrm{C}-\mathrm{H}) ; 129.8\left(\mathrm{~d},{ }^{1} J(\mathrm{C}-\mathrm{H})=160\right.$ $\mathrm{Hz}, 2 \mathrm{C}$, arom. $\mathrm{C}-\mathrm{H}) ; 130.5\left(\mathrm{~s}, 1 \mathrm{C}\right.$?, arom. $\mathrm{C}_{\text {quat. }}$); 130.7

TABLE 5. Final coordinates and equivalent isotropic thermal parameters of the non-hydrogen atoms for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{BrMgO}_{5}$ (4)

Atom	x	y	z	$U_{\text {eq }}\left(\AA^{2}\right)^{\text {a }}$
$\mathrm{Br}(1)$	0.08051(6)	$0.31256(4)$	0.16079(4)	0.0551(2)
$\mathrm{Mg}(1)$	$0.04344(17)$	$0.18007(12)$	$0.31382(11)$	$0.0414(5)$
O(1)	-0.0669(4)	0.4211(3)	0.4188(3)	0.0633(14)
O(2)	-0.1772(3)	$0.2805(3)$	0.3549(2)	0.0472(11)
O(3)	-0.0768(4)	0.0647(3)	0.4017(3)	0.0539(11)
$\mathrm{O}(4)$	0.0305(4)	0.0532(3)	0.2287(3)	$0.0595(14)$
$\mathrm{O}(5)$	0.2497(4)	0.0625 (3)	0.2819(3)	$0.0630(14)$
C(1)	0.1593(5)	0.1991(4)	0.4109(3)	0.0433(17)
C(2)	0.3027(5)	0.1340(4)	0.3989(4)	0.0504(19)
C(3)	$0.4007(6)$	$0.1338(5)$	$0.4513(5)$	0.066(2)
C(4)	$0.3555(7)$	$0.2003(5)$	0.5184(5)	0.072(3)
C(5)	0.2140 (7)	$0.2679(5)$	0.5335(4)	0.064(2)
C(6)	0.1195(6)	0.2688(4)	0.4799(3)	0.0479(17)
C(7)	-0.0310(6)	0.3464(5)	0.4984(4)	$0.060(2)$
C(8)	-0.2134(6)	$0.4538(5)$	0.4111(4)	$0.061(2)$
C(9)	-0.2314(6)	0.4019 (4)	$0.3376(4)$	$0.0512(17)$
C(10)	-0.2770(6)	$0.2316(4)$	$0.4206(4)$	0.0564(19)
C(11)	-0.1892(6)	$0.1261(5)$	0.4679(4)	0.064(2)
C(12)	-0.1290(7)	0.0022(5)	0.3573(5)	0.073(3)
C(13)	-0.0070(7)	-0.0424(5)	0.2837(5)	$0.073(3)$
C(14)	$0.1658(7)$	0.0217(5)	0.1646(4)	0.069(2)
C(15)	$0.2877(7)$	-0.0120(5)	0.2172(5)	0.071(2)
C(16)	$0.3604(6)$	0.0599(5)	$0.3250(4)$	$0.065(2)$
$\mathrm{Br}(2)$	$0.41676(7)$	0.68189(5)	$0.34002(4)$	0.0572(2)
$\mathrm{Mg}(2)$	0.44578(16)	$0.61545(12)$	$0.18563(11)$	$0.0396(5)$
O(6)	$0.2327(4)$	0.6027(3)	0.2077(3)	$0.0579(14)$
O(7)	0.4373(4)	0.4390 (3)	0.2688(3)	0.0583(14)
$\mathrm{O}(8)$	0.5540 (4)	0.4826 (3)	0.0978(2)	0.0508(11)
O(9)	0.6741 (3)	0.6038(3)	$0.1505(2)$	$0.0492(11)$
O(10)	$0.5800(4)$	$0.8337(3)$	0.0973(3)	$0.0613(14)$
C(17)	$0.3489(5)$	$0.7472(3)$	$0.0833(3)$	$0.0387(14)$
C(18)	0.4031(5)	0.8274(4)	0.0176(3)	0.0435(16)
C(19)	$0.3215(6)$	0.9028(4)	-0.0457(4)	0.0571(19)
C(20)	0.1867(7)	0.8994(5)	-0.0462(5)	0.069(2)
C(21)	$0.1265(6)$	0.8263(5)	$0.0186(5)$	$0.061(2)$
C(22)	0.2075 (5)	$0.7528(4)$	0.0819(4)	0.0454(17)
C(23)	0.1351(5)	$0.6770(5)$	0.1517(4)	0.0554(19)
C(24)	0.1825 (7)	$0.5171(5)$	$0.2683(5)$	0.071(2)
C(25)	$0.2963(7)$	$0.4557(5)$	$0.3256(4)$	0.069(3)
C(26)	$0.4768(7)$	$0.3530(5)$	$0.2136(5)$	0.066(2)
C(27)	0.6015(8)	$0.3690(5)$	0.1415(5)	0.075(3)
C(28)	$0.6668(7)$	0.5137(5)	0.0322(4)	0.072(2)
C(29)	$0.7643(6)$	0.5419(5)	0.0781(4)	0.0583(19)
C(30)	0.7360 (6)	$0.6774(5)$	0.1754(4)	0.059(2)
C(31)	0.7270 (6)	0.7821(5)	0.1070(5)	0.063(2)
C(32)	0.5532(6)	0.8321(4)	0.0110(4)	0.0534(17)

[^0]TABLE 6. Final coordinates and equivalent isotropic thermal parameters of the non-hydrogen atoms for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{BrHgO}_{5}$ (10)

Atom	x	y	z	$U_{\text {cq }}\left(\AA^{2}\right)^{\text {a }}$
Hg	0.91814(3)	-0.17870(4)	-0.07961(2)	0.03160 (1)
Br	$0.83361(9)$	0.00297(12)	$0.00855(6)$	0.0519(4)
O(1)	0.8373(5)	-0.4724(7)	-0.0463(3)	0.049(3)
O(2)	0.6166(5)	-0.3764(7)	- $0.0129(3)$	0.048(2)
O(3)	0.5314(5)	$-0.0727(7)$	-0.0863(3)	0.048(2)
$\mathrm{O}(4)$	0.7607(5)	-0.0670(6)	-0.2070(3)	0.042(2)
O(5)	0.9918(5)	-0.0187(7)	-0.2125(3)	0.044(2)
C(1)	0.9984(7)	$-0.3387(10)$	-0.1464(5)	0.033(3)
C(2)	1.0681(7)	$-0.28688(10)$	-0.2031(5)	0.039(3)
C(3)	1.1253(8)	-0.3952(13)	-0.2458(6)	0.053(4)
C(4)	1.1133(9)	-0.5541(13)	-0.2341(6)	0.058(4)
C(5)	1.0457(8)	-0.6042(11)	-0.1811(6)	0.050(4)
C(6)	0.9852(8)	$-0.5013(11)$	-0.1368(5)	0.037(3)
C(7)	$0.9096(8)$	$-0.5788(10)$	-0.0821(5)	0.047(3)
C(8)	0.7686 (8)	-0.5439(11)	0.0062(5)	0.048(4)
C(9)	$0.6967(9)$	-0.4244(11)	0.0422(5)	0.050(3)
C(10)	$0.5456(9)$	-0.2609(12)	$0.0183(6)$	0.059(4)
C(11)	0.4776(8)	-0.1912(12)	-0.0456(6)	0.053(3)
C(12)	$0.6119(7)$	$-0.1320(10)$	-0.1346(5)	0.042(3)
C(13)	$0.6665(7)$	-0.0002(10)	-0.1742(5)	0.040(3)
C(14)	0.8143(8)	$0.0319(10)$	-0.2574(5)	0.043(3)
C(15)	$0.9209(7)$	-0.0382(10)	-0.2783(4)	0.036(3)
C(16)	1.0887(8)	-0.1122(10)	-0.2168(5)	0.042(3)

(s, 1C?, arom. $\mathrm{C}_{\text {quat. }}$); $132.8\left(\mathrm{~d},{ }^{1} J(\mathrm{C}-\mathrm{H})=161 \mathrm{~Hz}, 2 \mathrm{C}\right.$, arom. C-H); 136.5 (s, 2C, xylyl-C(1,3)); 137.9 (d, ${ }^{1} J(\mathrm{C}-$ $\mathrm{H})=161 \mathrm{~Hz}, 1 \mathrm{C}$, arom. $\mathrm{C}_{\text {quat. }}$); 139.2 (s, 1C, arom. $\left.\mathrm{C}_{\text {quat. }}\right) ; 142.8\left(\mathrm{~d},{ }^{1} \mathrm{~J}(\mathrm{C}-\mathrm{H})=168 \mathrm{~Hz}, 1 \mathrm{C}\right.$, chin. -C$) ; 154.9$ ($\mathrm{s}, 1 \mathrm{C}$, phenyl-C(4)); 160.7 ($\mathrm{s}, 1 \mathrm{C}$, chin.-C(1)); 186.6 (s , $1 \mathrm{C}, \mathrm{C}=\mathrm{O}$). MS (direct inlet, Finnigan CH 5); m / z (relative intensity) $506\left(\mathrm{M}^{+}, \mathrm{C}_{30} \mathrm{H}_{34} \mathrm{O}_{7}\right), 329(28)$, 312(24), 299(7), 283(18), 269(9), 252(15), 239(10), 221(11), 208(10), 194(7), 178(6), 165(10), 135(12), 121(14). Parent ion mass calcd. for $\mathrm{C}_{30} \mathrm{H}_{34} \mathrm{O}_{7}: 506.230$. Found: 506.233. Anal. Found: $\mathrm{C}, 69.85, \mathrm{H}, 6.76 ; \mathrm{O}, 22.38$. $\mathrm{C}_{30} \mathrm{H}_{34} \mathrm{O}_{7}$ calcd.: $\mathrm{C}, 71.13 ; \mathrm{H}, 6.76 ; \mathrm{O}, 22.11 \%$.

3.18. (2-n-Butyl-1,3-xylylene)-18-crown-5 (23)

A solution of $9(2 \mathrm{mmol})$ in THF (25 ml), prepared at $-60^{\circ} \mathrm{C}$ from 2 and n-butyllithium, was allowed to warm to room temperature overnight then was quenched with $\mathrm{D}_{2} \mathrm{O}(0.5 \mathrm{ml})$. The mixture was evaporated to dryness, an excess of water was added, and the organic products were extracted with dichloromethane. The crude product (0.72 g of a slightly yellowish oil) was analyzed with ${ }^{1} \mathrm{H}$ NMR spectroscopy and GLC-MS. In addition to the deuterolysis product $\mathbf{1 4 a}$ (26%), an appreciable amount (67%) of ($2-n$-butyl-1,3-xylylene)-18-crown-5 (23, cf. [2]) was present, formed by alkylation of 9 by n-butyl bromide. The remaining products (about 7%, possibly ether cleavage products) could not be identified. Purification of 23 was performed by
crystallization from diethyl ether/n-pentane (m.p. about $43^{\circ} \mathrm{C}$), although complete separation from 14a was not possible.

23: ${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, ref. $\mathrm{CHCl}_{3}=7.27$ ppm): $\delta 0.98\left(\mathrm{t},{ }^{3} \mathrm{~J}=7 \mathrm{~Hz}, 3 \mathrm{H}\right.$, alkyl- CH_{3}); $1.47-1.51$ ($\mathrm{m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}$) ; 3.06 (t, broad, ${ }^{3} J=9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-$ $\left.\mathrm{C}_{3} \mathrm{H}_{7}\right) ; 3.50-3.70\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{C}_{2} \mathrm{H}_{4}\right) ; 4.29(\mathrm{~d}, \mathrm{~A}$ part of $\mathrm{AB},{ }^{2} J=11 \mathrm{~Hz}, 2 \mathrm{H}$, xylyl $\left.-\mathrm{CH}_{2}\right) ; 4.90(\mathrm{~d}, \mathrm{~B}$ part of AB, ${ }^{2} J=11 \mathrm{~Hz}, 2 \mathrm{H}$, xylyl- CH_{2}); $7.10\left(\mathrm{t},{ }^{3} J=7 \mathrm{~Hz}, 1 \mathrm{H}\right.$, xylyl-H(5)); 7.20 (d, ${ }^{3} J=7 \mathrm{~Hz}, 2 \mathrm{H}$, xylyl-H(4,6)). ${ }^{13} \mathrm{C}$ NMR ($62.89 \mathrm{MHz}, \mathrm{CDCl}_{3}$, ref. $\mathrm{CDCl}_{3}=77 \mathrm{ppm}$): δ $14.1\left(\mathrm{q},{ }^{1} J(\mathrm{C}-\mathrm{H})=124 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{Me}\right) ; 23.5\left(\mathrm{t},{ }^{1} J(\mathrm{C}-\mathrm{H})=\right.$ $\left.125 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{CH}_{2}-\mathrm{Me}\right), 27.2\left(\mathrm{t},{ }^{1} J(\mathrm{C}-\mathrm{H})=128 \mathrm{~Hz}, 1 \mathrm{C}\right.$, $\left.\mathrm{CH}_{2}-\mathrm{Et}\right) ; 33.4\left(\mathrm{t},{ }^{1} J(\mathrm{C}-\mathrm{H})=127 \mathrm{~Hz}, 1 \mathrm{C}\right.$, aryl- $\mathrm{CH}_{2}-$ $\mathrm{Pr}) ; 69.2\left(\mathrm{t},{ }^{1} \mathrm{~J}(\mathrm{C}-\mathrm{H})=140 \mathrm{~Hz}, 2 \mathrm{C}, \mathrm{C}_{2} \mathrm{H}_{4}\right) ; 70.3(\mathrm{t}$, $\left.{ }^{1} J(\mathrm{C}-\mathrm{H})=141 \mathrm{~Hz}, 2 \mathrm{C}, \mathrm{C}_{2} \mathrm{H}_{4}\right) ; 70.5\left(\mathrm{t},{ }^{2} J(\mathrm{C}-\mathrm{H})=141\right.$ $\left.\mathrm{Hz}, 2 \mathrm{C}, \mathrm{C}_{2} \mathrm{H}_{4}\right) ; 70.6\left(\mathrm{t},{ }^{1} J(\mathrm{C}-\mathrm{H})=141 \mathrm{~Hz}, 2 \mathrm{C}, \mathrm{C}_{2} \mathrm{H}_{4}\right)$; $72.1\left(\mathrm{t},{ }^{1} J(\mathrm{C}-\mathrm{H})=141 \mathrm{~Hz}, 2 \mathrm{C}\right.$, xylyl- $\left.\mathrm{CH}_{2}\right) ; 124.9(\mathrm{~d}$, $\left.{ }^{1} J(\mathrm{C}-\mathrm{H})=161 \mathrm{~Hz}, 1 \mathrm{C}, \operatorname{xylyl}(5)\right) ; 130.8\left(\mathrm{~d},{ }^{1} J(\mathrm{C}-\mathrm{H})=\right.$ $158 \mathrm{~Hz}, 2 \mathrm{C}$, xylyl(4,6)); 136.2 (s, 2C, xyili(1,3)); 143.5 (s, 1C, xylyl(2)). GLC-MS mass spectrum: m / z (rel. intensity) $352\left(4, \mathrm{M}^{+}, \mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{5}\right), 175(30), 158(38), 143(22)$, 131(16), 129(28), 119(30), 105(15), 89(37), 45(100).

3.19. Crystal structure determinations

X-Ray data were collected on an Enraf-Nonius CAD4 diffractometer. All calculations were carried out on a MicroVAX-II cluster. Details of the structure

TABLE 7. Final coordinates and equivalent isotropic thermal parameters of the non-hydrogen atoms for $\mathrm{C}_{32} \mathrm{H}_{46} \mathrm{HgO}_{10}$ (11)

Atom	x	y	z	$U_{\mathrm{eq}}\left(\AA^{2}\right)^{\mathrm{a}}$
IIg	1	1	0	$0.0338(1)$
$\mathrm{O}(1)$	$0.7962(3)$	$0.7679(3)$	$0.04924(13)$	$0.0426(8)$
$\mathrm{O}(2)$	$0.5799(4)$	$0.6952(3)$	$-0.05823(17)$	$0.0668(11)$
$\mathrm{O}(3)$	$0.5865(4)$	$0.9559(4)$	$-0.15987(18)$	$0.0670(12)$
$\mathrm{O}(4)$	$0.7298(3)$	$1.2097(3)$	$-0.09557(15)$	$0.0544(10)$
$\mathrm{O}(5)$	$0.9313(3)$	$1.3289(3)$	$0.00616(14)$	$0.0428(9)$
$\mathrm{C}(1)$	$0.9417(4)$	$1.0567(5)$	$0.09616(18)$	$0.0348(10)$
$\mathrm{C}(2)$	$0.9477(4)$	$1.2072(4)$	$0.1202(2)$	$0.0387(12)$
$\mathrm{C}(3)$	$0.9095(4)$	$1.2416(5)$	$0.1849(2)$	$0.0490(14)$
$\mathrm{C}(4)$	$0.8639(5)$	$1.1322(6)$	$0.2266(2)$	$0.0560(16)$
$\mathrm{C}(5)$	$0.8539(4)$	$0.9851(6)$	$0.20396(19)$	$0.0520(13)$
$\mathrm{C}(6)$	$0.8924(4)$	$0.9464(5)$	$0.1396(2)$	$0.0377(11)$
$\mathrm{C}(7)$	$0.8808(5)$	$0.7827(5)$	$0.1138(2)$	$0.0434(12)$
$\mathrm{C}(8)$	$0.6510(4)$	$0.7893(5)$	$0.0546(2)$	$0.0508(16)$
$\mathrm{C}(9)$	$0.5788(5)$	$0.8257(5)$	$-0.0152(2)$	$0.0588(17)$
$\mathrm{C}(10)$	$0.5071(6)$	$0.7158(6)$	$-0.1253(3)$	$0.0723(19)$
$\mathrm{C}(11)$	$0.5916(7)$	$0.7991(6)$	$-0.1730(3)$	$0.0737(19)$
$\mathrm{C}(12)$	$0.6884(6)$	$1.0383(6)$	$-0.1896(3)$	$0.0692(19)$
$\mathrm{C}(13)$	$0.6820(6)$	$1.2004(6)$	$-0.1667(2)$	$0.0682(19)$
$\mathrm{C}(14)$	$0.7260(5)$	$1.3596(5)$	$-0.0719(2)$	$0.0564(14)$
$\mathrm{C}(15)$	$0.7878(4)$	$1.3668(5)$	$0.0029(2)$	$0.0497(14)$
$\mathrm{C}(16)$	$0.9990(4)$	$13292(4)$	$0.0755(2)$	$0.0470(14)$

[^1]determinations are given in Table 4. Supplementary data have been deposited with the Cambridge Crystallographic Data Centre. Geometrical calculations were carried out with platon [7], and molecular drawings are by pluton [8]. Scattering factors were taken from [9] and corrected for anomalous dispersion [10].

For $\mathbf{4},\left(\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{BrMgO}_{5}\right)$, reflections were collected from a transparent colorless crystal glued on top of a glass fibre. Unit cell parameters were derived from the SET4 setting of 12 reflections in the range $13<\theta<19^{\circ}$. The data were corrected for Lp decay and absorption (DIFABS [11] correction range $0.87-1.20$). The structure was solved by direct methods with shelxs-86 [12] and refined on F with shelx-76 [13]. Hydrogen atoms were fixed at calculated positions with a common $U_{\text {iso }}$. Final positions of all non H -atoms are given in Table 5.

For $10\left(\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{BrHgO}_{5}\right)$ reflection data were collected from a block-shaped transparent colorless crystal. Unit cell parameters were derived from the SET4 setting of 25 reflections in the range $9<\theta<15^{\circ}$. The data were corrected for Lp, decay and absorption (difabs [11] correction range $0.74-1.63$). The structure was solved by standard Patterson and Fourier methods with shelxs-86 [12] and refined on F with shelx-76 [13]. Hydrogen atoms were fixed at calculated positions with a common $U_{\text {iso }}$. Final positions of all non H -atoms are given in Table 6.

For $11\left(\mathrm{C}_{32} \mathrm{H}_{46} \mathrm{HgO}_{10}\right)$, reflection data were collected from a colorless block-shaped crystal glued on top of a glass fiber. Unit cell parameters were derived from the SET4 setting angles of 12 reflections in the range $11<\theta<14^{\circ}$. The data were corrected for Lp, decay and absorption (difabs [11] correction range $0.78-1.41$). The structure was solved with standard Patterson and Fourier techniques with shelxs-86 [12] and refined with shelx-76 [13]. Hydrogen atoms were fixed at calculated positions. Final positions of all non H -atoms are given in Table 7.

Acknowledgement

X-Ray data were kindly collected by A.J.M. Duisenberg. The investigation was supported in part (P.R.M., W.J.J.S. and A.L.S.) by the Nellerlands Foundation for Chemical Research (SON) with financial aid from the Netherlands Organization for Scientific Research (NWO). Full details of the crystal structure determinations, including structure factors, may be obtained from A.L.S.

References

1 P.R. Markies, O.S. Akkerman, F. Bickelhaupt, W.J.J. Smeets and A.L. Spek, J. Am. Chem. Soc., 110 (1988) 4284.

2 M. Skowronska-Ptasinka, P. Telleman, V.M.L.J. Aarts, P.D.J. Grootenhuis, J. van Eerden, S. Harkema and D.N. Reinhoudt, Tetrahedron Lett., 28 (1987) 1937.
3 M. Skowronska-Ptasinska, V.M.L.J. Aarts, R.J.M. Egberink, J. van Eerden, S. Harkema and D.N. Reinhoudt, J. Org. Chem., 53 (1988) 5484.

4 A.D. Vreugdenhil and C. Blomberg, Recl. Trav. Chim. Pays-Bas, 82 (1963) 453.
5 P.R. Markies, T. Nomoto, G. Schat, O.S. Akkerman, F. Bickelhaupt, W.J.J. Smeets and A.L. Spek, Organometallics, 10 (1991) 3826.

6 P.R. Markies, T. Nomoto, O.S. Akkerman and F. Bickelhaupt, J. Am. Chem. Soc., 110 (1988) 4845.

7 A.L. Spek, Acta Crystallogr., Sect. A, 46 (1990) C34
8 A.L. Spek, The Eliciin package, in D. Sayre (ed.), Computational Crystallography, Clarendon Press, Oxford, 1982.
9 D.T. Cromer and J.B. Mann, Acta Crystallogr., Sect. A, 24 (1968) 321.

10 D.T. Cromer and D. Liberman, J. Chem. Phys., 53 (1970) 1891.
11 N. Walker and D. Stuart, Acta Crystallogr., Sect. A, 39 (1983) 158.

12 G.M. Sheldrick, shelxs86, Program for Crystal Structure Determination, University of Göttingen, Germany, 1986.
13 G.M. Sheldrick, SHELX76, Crystal Structure Analysis Package, University of Cambridge, UK, 1976.

[^0]: ${ }^{\text {a }} U_{\text {eq }}=$ one-third of the trace of the orthogonalized U.

[^1]: ${ }^{a} U_{\text {eq }}=$ one-third of the trace of the orthogonalized U.

